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Abstract—The academic success of individual students differs
widely and it depends on various factors, ranging from financial
to social and to health aspects. In this article, we propose a
concept for a novel productivity tracking system that provides
the basis for a self-assessment of academic behaviour and that
can be used by students to support their academic success. The
development of such a system requires interdisciplinary efforts,
most of them located in the field of collaborative interactive
learning (CIL) that is grounded on a socio-technical system
perspective. The system is interactive since it is based on bi-
directional communication, collaborative in the sense that it
uses students, other students, and external sources such as the
Internet for generation of knowledge, and learning in the sense
that it continuously and autonomously acquires knowledge. It
is further self-organised as it decides about interaction partners
and self-adaptive in terms of modifying its behaviour according
to changing conditions.

I. INTRODUCTION

The primary goal of universities is the education of students.
In general, it is the responsibility of each student to self-
organise his/her studies and to gain the best possible result.
However, we observe that the academic success of students
differs widely, which is only to a certain degree caused by
methods and approaches of the individual university. Con-
sequently, the question arises why some students obviously
perform better than others.

There are some externally measurable factors that have
impact on the students’ success: Do they have to work for
financing their studies? Or do they suffer due to (permanent)
illnesses? These and further aspects such as stress, mood,
workload, sociability, sleep, and mental wellbeing have a large
impact on students academic performance [1]. The idea of this
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article is to develop a system that supports students by self-
assessing their own academic behaviour in order to rate their
productivity.

Technically, we propose a smartphone APP that is connected
to a centralised cloud component. However, the main function-
ality is based on self-adaptive and self-organising behaviour
since the individual instance of the APP is autonomously
customising the internal models and relies on self-organised
interactions with the user and other distributed systems. In
order to assess the productivity of the user as well as his/her
mental or behavioural state, an interdisciplinary approach is
needed that initially combines the expertise of machine learn-
ing, user interaction, crowdsourcing, collaboration engineer-
ing, embedded intelligence, collective systems, and education.
In a second step, further contributions from fields such as
security and psychology (and others) will become highly
relevant.

We propose to realise the productivity tracking (ProTrack)
system by means of technology from the field of collaborative
interactive learning (CIL) [2]. ProTrack will be interactive
since it is based on bi-directional communication (i.e. queries
to the user as well as providing feedback), collaborative in the
sense that it uses students, other students, and external sources
such as the Internet for generation of knowledge, and learning
in the sense that it continuously and autonomously acquires
knowledge. However, since CIL is a recent research area, we
further outline the resulting research challenges that have to be
covered for finally realising a sophisticated ProTrack system.

The remainder of this article is organised as follows: Sec-
tion II briefly summarises the concept of CIL. This is followed
by a brief introduction to the task-interaction-collaboration
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taxonomy used in the field (Section III). Afterwards, Sec-
tion IV presents the ProTrack system including a technical
concept and challenges that need to be addressed by the field of
CIL. Section V presents an overview of relevant contributions
from the state-of-the-art. Finally, Section VI summarises the
article and gives an outlook to future work.

II. COLLABORATIVE INTERACTIVE LEARNING

Collaborative Interactive Learning (CIL) is a recent research
area that focuses on the development of a new generation
of systems with lifelong learning capabilities to work in
uncertain environments and it is grounded on a socio-technical
system perspective (as, e.g., outlined in [8]) since humans
and other systems determine critical success factors. Such CIL
systems are

e learning in the sense that they are able to self-improve
their own knowledge bases in a self-organised way and,
moreover, even self-optimise regarding the techniques
applied to reach this goal,

e collaborative in the sense that various humans and/or
smart systems collaborate in that learning processes to
master more or less complex tasks including tasks which
they cannot cope with alone, and

o interactive in the sense that there is an information and
knowledge flow not only from humans to the smart
systems but also vice versa in various ways.

As a result, CIL systems are a particular instance of the
broader class of self-adaptive and self-organising systems
[3], since they have to act highly autonomous in uncertain
environments in the sense that

o they assess their own knowledge to decide when this
knowledge is not sufficient to cope with new kinds of
situations arising at runtime,

o they connect to new information or knowledge sources
(e.g. other smart systems and/or humans) and know which
kind of information or knowledge they can obtain from
which source,

« they initiate an interaction step to inquire for information
or knowledge that they have realised they miss to act
optimally,

o they assess the quality of information or knowledge
sources and the quality, usefulness, topicality, etc. of
information and knowledge they gather, and

o they exploit various machine learning mechanisms to in-
crease their own knowledge, e.g., collaborative learning,
semi-supervised learning, transfer learning, reinforcement
learning, and active learning (cf. [4]).

In the field of CIL, we distinguish two areas:

o In the area of dedicated collaborative interactive learn-
ing (D-CIL), learning processes are typically clearly
defined (such as, e.g., in an industrial quality monitoring
process), an involved group of humans can be termed to
be domain experts (with differing degrees of expertise in
the specific application field), this group is rather small,
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and the experts collaborate over a longer period of time
(see [5] for details).

o In the area of opportunistic collaborative interactive
learning (O-CIL), we face large-scale collaboration of
smart systems that use all kinds of information and
knowledge, even if these sources are sporadically avail-
able or very uncertain (cf. [6]). Goals of learning in such
systems are sometimes not clearly defined and there may
be several goals that are possibly conflicting. Humans
cannot necessarily be assumed to be experts regarding
certain applications (see [7] for details).

III. TASK-INTERACTION-COLLABORATION TAXONOMY

The field of CIL as outlined above has its roots in the
domain of self-adaptive and self-organising systems. How-
ever, the shift towards a collaboration between distributed
autonomous systems and humans requires a socio-technical
system design [8]. In the following section, we briefly sum-
marise implications for these socio-technical collaboration
mechanisms by summarising preliminary work in the field of
collaboration engineering, see [9].

CIL systems will be able to cope with different forms
of collaboration. Smart systems take over tasks previously
performed by humans and thus, change labour markets. Con-
sequently, a reallocation of work is arising, and new forms and
opportunities of collaboration occur [10]. The idea of CIL will
help to shape the future reallocation of work between humans
and machines. To use knowledge sources such as other smart
systems and/or humans in an efficient way to achieve results of
high productivity, a classification scheme for a different form
of the division of labour is needed. Therefore, we propose to
classify tasks according to their complexity and assign them
to a collaboration-interaction-type.

The taxonomy of tasks and interaction-collaboration-types
aims to identify and classify typical tasks and opens directions
to sketch the opportunities for future research (see Fig. 1) [9].

Interaction-Collaboration Types
Machine- Machine- Human-
Machine Human Human
Low Knowledge
. Exploitation Areaof untapped
b= Tasks potentials
i Average Knowledge
E Validation
9] Tasks
2
= | High Area of Knowledge
= Arising Questions Creation
Tasks

Fig. 1. Task-Interaction-Collaboration Taxonomy, see [9].

The taxonomy distinguishes between three generic levels of

task complexity:

e Low: Smart systems refer to a correct solution space
(ground truth). The smart systems are able to solve the
task on their own.

o Average: Smart systems refer to a solution space that
needs to be verified by humans.
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e High: A solution space does not exist. Humans need to
create a solution and thus, the truth.

The taxonomy distinguishes between three interaction-
collaboration-types:

e Machine-machine: Machines collaborate to solve a task
autonomously.

o Machine-human: Machines and humans solve a task
together.

o Human-human: Humans collaborate to create a correct
solution for a given task.

By interpreting the cells of the taxonomy, the idea is that
CIL systems facilitate the collaboration and interaction among
other systems and/or humans. To facilitate the collaboration,
we propose to develop reference processes that service as
reusable patterns and bundle the whole expertise to allow
for solving a task (e.g. assignments, recommendations). This
makes collaborative procedures of CIL systems reusable and
increases the potential to adapt it to other tasks and domains.

IV. A PRODUCTIVITY TRACKING SYSTEM FOR STUDENTS

Regarding the previously introduced taxonomy, we focus
on the interaction-collaboration types Machine-Machine and
Machine-Human in the following and mostly neglect the
Human-Human type. Furthermore, we conceptually consider
tasks from all three complexity levels.

Understanding human behaviour patterns is among the most
challenging tasks in machine learning. Putting such patterns
in a larger context of long term developments and processes
taking place in human life is an even more ambitious problem.
As an instance of this problem, we consider the question what
factors influence the academic performance of students at a
university. Such factors can range from study timing (how long
before the tests, at what times of the day, in what time chunks
etc.), through the question of studying alone vs. in groups
(what type of groups) to general lifestyle and work life balance
aspects (sleep patterns, sports, social activities etc.). Many
of those factors can in principle be detected using sensors
in people’s mobile devices, device usage logs (e.g. music,
video etc.), and digital information such as electronic agendas,
communication patterns, and requests to users’ personal digital
assistants. We propose to use the CIL paradigm to solve the
problem of relating such information to the relevant behaviours
and behaviour patterns of users and to use the detected patterns
to predict the academic performance of students.

To this end, we will proceed in two stages: We will consider
(1) the problem of detecting behaviours and behaviour patterns
and (2) the problem of predicting academic performance from
such patterns, separately. In doing so, we will initially work
on the analysis of the gathered data (incl. the processing
of analysis results for students), where O-CIL and D-CIL
work separately and are combined afterwards. Finally, we
will include predictions, recommendations, etc. In terms of an
experimental approach, we propose to substantially leverage
APPs such as the TU-Kaiserslautern University APP [11]
which has been developed by one of our groups as means
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for data collection with volunteer students. However, the
APP provides just the basic functionality and needs novel
components for CIL activities.

A. A productivity tracker for students

Technically, the basis for ProTrack will be the TU KL-
APP that serves as official APP of the University and is
increasingly popular with students. The APP is based on a gen-
eral framework for participatory data collection that has been
originally developed for large scale crowd monitoring [11] in
the SOCIONICAL EU project and used by nearly 100,000
people across Europe at various events [12]. Currently, systems
based on the framework also include a participatory APP
for tracking disease spread' and the visitors APP for an
exhibition at the Pfalzgalerie in Kaiserslautern. We will use
the framework to embed the O-CIL and D-CIL based data
collection, the collaborative model building, and an exemplary
academic performance prediction functionality into the TU-KL
APP resulting in the envisioned Productivity Tracker System
(ProTrack). We aim at recruiting student volunteers who will
install and run the extensions over an extended period of time.

In the following paragraphs, we outline the schematic
concept of the Productivity Tracker (ProTrack). ProTrack runs
as APP on the students’ smartphones and is connected to
the university information system, external secondary users
(e.g. lecturers), and other instances of the APP running on
smartphones of students of the peer group. Fig. 2 briefly
summarises the architecture.

1) Self-assessment: In general, there are two approaches to
acquire direct feedback from students: questionnaires and label
requests. The former approach is based on a standardised form
that has to be completed in periodic cycles for rating personal
feelings. Examples for the requested categories include level
of stress, the current mood, the physical stress level, or the
overall activity level. The second aspect, i.e. label requests,
mainly comprises a module for active learning [13]. Here,
the ProTrack system asks the student direct questions such
as “Are you tired at the moment?” or “Are you working
on the worksheet for the lab course?” (in general, there is
always a certain trigger for these questions, i.e. a guess or
an event). Asking the user directly provides knowledge with
the highest reliability but, in turn, has to be utilised efficiently
to avoid annoying the student and consequently decreasing
his/her willingness to participate in ProTrack. The feedback
then allows to generate and refine models for user behaviour
and academic performance.

2) Activity classification: As a ubiquitously available
source of monitoring the user behaviour, the various sensors of
the smartphone are available. Examples include accelerometer,
microphone, light sensor, GPS/Bluetooth, and WiFi (phone
usage, website classification). Based on these sensor readings,
activity recognition can be performed that assesses the cur-
rent user behaviour (e.g. sitting, walking, running) and the
corresponding higher-levelled context (e.g. attending a lecture

ISee https://de.grippenet.ch (last access 09-01-2018)
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Fig. 2. Schematic illustration of ProTrack APP including the sensing and analytics system architecture.

or learning). However, especially the higher-levelled context
information needs further external input (e.g. location informa-
tion about lecture halls or status from other smartphones in the
vicinity) to be able to come up with appropriate classifications.

3) Peer group: Besides the user himself, his/her fellow
classmates are a valuable source of knowledge for monitoring
and assessing the academic performance and the behaviour
of the user. In Fig. 2, direct connection via WiFi and/or
Bluetooth is envisioned. Here, questions, tasks/problem solv-
ing, sensor readings, and models built for the individual user
or his/her classmates can be exchanged considering privacy
concerns. Sensor information can be used to validate activity
recognition measures, for instance. Exchange of models refers
to higher-level knowledge such as expected learning times.
In turn, the term ‘“questions” can comprise direct questions
for labels (as needed for active learning mechanisms such as
“Are you cooperatively working on the same worksheet for
the lecture?”) that immediately are expected to be answered
and questionnaires with a collection of aspects rating the
behaviour of the particular student with a longer time horizon
(and no immediately needed answer). This aspect especially
demands for insights from the domains of crowdsourcing and
collaboration engineering.

4) University information system: The detection of activ-
ities may benefit from additional context information such
as the schedule of lectures and laboratories during the study
period. This information is available through external sources
such as the university information system and — besides topic
and time — includes room numbers and scope (i.e. degree
course, expected number of participants, and required prior
knowledge). Furthermore, grades may be accessed when im-
plicitly triggered by the user to provide the basis of calculating
correlations between recognised behaviour and the resulting
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academic success.

5) Sphere of privacy: As outlined in the previous para-
graphs, an exchange of knowledge and observations is sub-
stantial part of the ProTrack system. However, this exchange
refers to a high degree to private data. Consequently, we
envision to found ProTrack on concepts from the domain of
federated learning (FL) [14]. The concept of FL comprises
centralised components, and the decentralised autonomous
entities (here: the users’ ProTrack APPs) send model updates
to these centralised components (and vice versa). All submitted
content is checked for privacy issues prior to sending, and only
appropriately anonymised information is shared. Correspond-
ing mechanisms need to become part of the ProTrack system.

6) External productivity assessment: Academic perfor-
mance can be measured in terms of success rates for courses.
For instance, the student’s semester-wise exam grades define
how successful the last six months have been. This includes
the degrees as well as the number of successful courses. In
addition, secondary users such as lecturers or tutors may be
queried about estimations of expertise, efforts, and understand-
ing (although these measures are highly subjective) which can
be considered in the overall models.

7) Models: The overall goal of the ProTrack system is
to generate and maintain models as basis for predicting
and explaining user behaviour. This comprises two major
aspects: the academic performance and the mental health
status that is interwoven with the academic performance aspect
as highlighted in the motivation. Furthermore, a prerequisite
for both are fundamental models for the expected behaviour
of the students and their expected academic behaviour (i.e.
a “semester model”); especially the expected academic be-
haviour significantly changes from semester to semester due to
different lecture schedules. Furthermore, models generated and
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provided by other peers are combined with the own models.

8) CIL component: The major control unit for the Pro-
Track system is the CIL component that queries, gathers, and
analyses incoming data at all abstraction levels and maintains
the models. Since CIL is a recent research field, the major
research efforts have to be done here, see Section II. In future
work, the CIL component may augmented with capabilities for
recommending the student study schedules and organisation of
daily activities. We outline some of the resulting challenges in
the following paragraphs.

B. Challenges for CIL

The ProTrack system covers aspects from both fields of CIL:
D-CIL and O-CIL. In the following paragraphs, we outline the
particular challenges for both fields.

The D-CIL part relies on smartphone based interactive
questionnaires and tasks as well as online information such
as lecture schedules. The system will accompany a group
of students, tutors, and lecturers (e.g. a class of computer
science students) over several semesters and actively capture
and analyse the students’ behaviour and life style by means of
various kinds of questions. It will also be able to give some
feedback by comparing the individual’s behaviour to that of
the group. Technically, this combines technology from several
fields of research: (1) active learning [13] concepts to decide
which information is triggered efficiently from the user, (2)
collaboration engineering [15] and crowdsourcing concepts
[16], [17] to provide appropriate and efficient collaboration
with other user and their devices, (3) Organic Computing
concepts [3] for system architecture and self-* mechanisms,
(4) machine learning aspects such as sensor/information fu-
sion, incomplete data handling, or transfer learning, and (5)
meta learning [4] concepts to decide about the most beneficial
utilisation of available knowledge sources.

The O-CIL part will be based on auditory scene analy-
sis to recognise and assess situations that are relevant for
productivity tracking. Recognising situations such as various
learning settings, different leisure activities, social interactions,
and other life style relevant factors is a well known problem in
the research area of sensor based context and human activity
recognition. Concerning STEM (science, technology, engi-
neering, and mathematics)-disciplines we track, for example,
also the weekly recitations and analyse how students solve
the different tasks, how successful they are and which kind
of strategies would be most suitable. This data will provide
further suitable information to recommend successful learning
strategies individually.

Today, the distinction between state of the art and open
research problems runs along two dimensions: On the one
hand, this refers to the complexity of the involved situations
and activities and, on the other hand, to the degree to which
the environment in which the recognition is taking place can
be considered to be “open ended” rather than constrained and
controlled. Thus, in sufficiently constrained lab environments
with elaborate sensory instrumentation, various complex activ-
ity recognition tasks were demonstrated. For example, we have
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been able to show that a combination of eye motion tracking
and head motion pattern analysis can be used to reliably
distinguish activities such as reading, watching video, solving
mathematical problems, or doing wood workshop tasks [18].
Furthermore, we could analyse cognitive state measurements
on learning materials [19] and provide different kinds of learn-
ing support [20]. However, this has been accomplished in a lab
setting with users sitting at a desk (no other motion artifacts)
and engaging only in activities from a pre-defined setup.
How this sort of recognition scales to dynamic, unconstrained
environments is an open question. The practicability of well
defined, stable head mounted sensor setups for continuous use
may become another important issue.

For ProTrack, we propose to rely on a combination of two
sensing modalities that are known to work well in every day
life: location and sound, later possibly extended with user
motions (from smart phone accelerometers) and presence of
Bluetooth devices in the environment [21]. Indoor location
based on the reachability of WiFi access points is already
provided by most smartphone location services. Interestingly,
the corresponding maps have been generated using a method-
ology reassembling a simple version of the O-CIL concept:
from traces and WiFi scans voluntarily provided by users.

Audio signals are known to be a rich and reliable source
of information about the environment and their use has been
already explored in context and situation recognition [22].
In past work, complex audio context has been recognised
with little computational effort [23]. In addition, it has also
been demonstrated how privacy concerns can be overcome by
recording only short snippets of sound (e.g. 100 ms every
0.5 sec) and randomly mixing them. While this makes the
reconstruction of understandable speech impossible (which is
the key privacy concerns), most relevant situation characteris-
tics (e.g. the sound of a projector, the fact that a single person
is speaking, music, cocktail party effect) can still be retrieved.
The main problem preventing widespread use of sound as con-
text recognition sensor for unconstrained environments is the
combination of very high degree of diversity and the difficulty
of gathering labelled sound data from real life environments.
Thus, for example, while humans will easily recognise the
humming sound of a projector in a seminar room, different
projectors in different rooms do sound differently. Further-
more, different locations will have the projector sound over-
layed with different background sounds, echo, etc. Statistical
models built using the traditional method of recording sound
from a set of devices and situations created in constrained
laboratory environments have proven to be inadequate to
deal with such real world variations. Instead, we propose
to use the O-CIL concept to collaboratively, incrementally
build such models from data collected on every day basis by
smartphones of participating users. The system will exchange
model components, labels, and training data between the users
devices (and centralised components) in a way that maximises
training progress while observing individual privacy policies,
minimising resource usage and the inconvenience caused by
label requests. We also have to investigate the use of online
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videos to be annotated by volunteers (e.g. through mechanical
turk [24]) as an additional source of labels for training data.

V. RELATED WORK AND RESEARCH ACTIVITIES

This section describes the state of the art in some related
fields. We distinguish between three relevant fields: (a) produc-
tivity tracking systems, (b) smartphone-based sensing systems,
and (c) research areas relevant for basic CIL technology.

A. Productivity tracking

Directly comparable to the presented approach to produc-
tivity tracking is the StudentLife (SL) system developed at
Dartmouth College since 2014, see [25]. SL is based on a
continuous sensing APP that monitors students’ activities and
assesses the day- and week-based impact of cognitive load
on stress, sleep, activity, mood, sociability, mental well-being,
and academic performance. The study was performed with
48 students for 10 weeks using Android phones. Analysis and
evaluation of the gathered data showed a number of significant
correlations between the objective sensor data from smart-
phones and mental health and educational outcomes of the
student body. Furthermore, a certain Dartmouth term lifecycle
has been found in this data: students are typically starting
the semester with high positive affect and conversation levels,
low stress, and healthy sleep and daily activity patterns. With
increasing workload induced by ongoing study programmes,
stress appreciably rises while positive affect, sleep, conver-
sation and activity drops off. Afterwards, SL has been used
for further investigations in the field resulting in the SmartGPA
system [26], which promises to distinguish between study (e.g.
study duration) and social (e.g. partying) behaviour of a group
of undergraduates. The SL approach slightly differs in the
scope and the basic information gathered by the smartphones.
It further can be improved by CIL technology by means of
allowing for active collaboration between machine and humans
or groups of these. However, it illustrates that ProTrack is
feasible and may result in the expected results.

Almost in parallel to SL, Watanabe et al. [27], [28] used
sensor badges to track student activity. They focused on the
correlations between scholastic performance and face-to-face
interaction among students during break times. Compared to
SL and ProTrack, the sensor equipment is limited and the
scope is restricted to face-to-face interaction.

Besides technical solutions, contributions from the fields of
education and psychology provide the theoretical foundation
of the ProTrack approach. Here, research has investigated
which aspects can be used as appropriate predictors of col-
lege students’ academic performance. The main focus was
on students’ personality traits (e.g. conscientiousness), their
lifestyle behaviours (e.g. sport activity, social activity, sleeping
behaviour), and mental states (e.g. stress, attraction) and the
correlation of these aspects with the course grades. For a
recent survey in this field, see [29]. Other studies revealed
that aspects situated in the students’ personality have a major
impact on the academic productivity and success [30], [31].
Furthermore, grade averages tend to be higher among students
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meeting health guidelines for moderate—vigorous physical
activity [32], [1]. Although being difficult to study, social
interaction behaviour seems to be a further highly relevant
aspect for students’ productivity in academia [33].

B. Smartphone- and sensor-based monitoring systems

Besides productivity aspects, smartphone-based recognition
of mental states is closely related to the scope of ProTrack. For
instance, [34] considers wearable sensors to assess the physical
and mental state of test subjects. In particular, a group of eight
senior persons has been investigated living in a continuing care
retirement community. The study was performed for one week
and revealed a correlation between depression and patterns in
the measured sensor data. As an alternative, [35] used wearable
sensors again and focused on bipolar disorder — but long-
term data is missing from this study. Other studies correlated
self-assessment of users with sensor data, see e.g. [36], [37].
The results indicate that self-reported activity, stress, sleep and
phone usage are strongly correlated with self-reported mood.

Further systems focus on interfaces for mental health service
providers to observe the state of a patient. Examples include
Health Buddy [38] and Mobilyze [39]. However, these systems
are only applicable to a specific use case and are based on a
predefined set of questions/answers or triggers.

C. Collaborative interactive learning

As outlined in Section III, CIL is a recent research area that
has its roots in several domains. In the following, we briefly
summarise the most relevant fields and their benefit for CIL.

Fundamentals of Collective Adaptive Systems investigates
design and operation principles for heterogeneous, distributed
systems with entities that have individual goals and solution
strategies [40]. These entities interact at various temporal and
spatial levels. A key aspect is the cooperation of humans
with systems. Important issues are conflict resolution, long-
term stability, handling noisy or outdated information, and
development of open systems where single entities leave the
overall system and new ones enter.

Multi-Agent Systems (MAS) is a field concerned with de-
sign and cooperation schemes for distributed collections of
autonomous subsystems [41]. In this context, an autonomous
subsystem is called “agent” since it acts on behalf of a certain
user and aims at achieving the predefined goals of this user.
Conceptually, the term MAS summarises research on questions
in the context of how autonomous, distributed, and smart
agents can share their knowledge and experience, negotiate
their goals, and develop plans based on their potentially het-
erogeneous capabilities, resulting in coordinated actions and
collective problem solving. These aspects provide a valuable
basis for ProTrack in particular and CIL in general — however,
questions of modelling the knowledge or novel crowd-oriented
interaction patterns have to be developed.

Online Learning (OL) algorithms process data which arrive
in a sequential order [42]. They aim at learning knowledge
incrementally from past data. This is especially important in
situations with huge amounts of data which cannot be stored or
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processed in feasible time (big data). More advanced methods
are able to react to drift or sudden shift in time-variant data
streams or are combined with active learning.

Organic Computing (OC) [3], [43] (see also Autonomic
Computing [44]) addresses complex technical systems that
will self-adapt to new environmental conditions at runtime.
Key technologies are self-x techniques inspired by nature
(e.g. self-configuration, self-organisation, or self-optimisation).
By means of such self-+ mechanisms, traditional design-time
decisions are shifted to runtime and into the responsibility
of systems themselves, resulting in a massively increased
autonomy [45], [46]. In the context of ProTrack and CIL, OC
will provide basic technology — however, the approaches from
the fields lack fundamental research on collaborative learning
approaches (in particular active learning approaches) allowing
for an adaptation to emerging environmental situations in time-
variant environments as outlined for ProTrack [2].

Activity Recognition aims at deriving high level knowledge
about human activities and the situation in the human’s envi-
ronment from simple sensors. Sensorial data can be provided
by mobile motion sensors (e.g. accelerometer). In some cases,
further sources from other applications or domains that provide
higher level information such as calendars or statistics (for
instance, time usage statistics or computer usage statistics)
are used as well. In the recognition process, the sensor data
are processed and matched to activities. The continuously
incoming data stream is segmented, for instance by applying a
Sliding Window or Sliding Window And Bottom-up (SWAB)
approach [47]. For each segment application-specific char-
acteristics, i.e. features, are extracted. Commonly extracted
features are statistical features (e.g. mean and variance) or
energy [48]. These features are often used as they are easy to
calculate and simultaneously provide additional insights into
the data characteristics. Furthermore, features calculated in the
frequency domain have been investigated. The analysis of time
series data in the frequency domain can extract unseen patterns
and trends in data [49]. For example, a Fourier transform
can be used to uncover data characteristics that support the
recognition of a user’s fall [50]. The extracted feature values
are passed to a machine learning algorithm to generate an AR
model. A variety of machine learning algorithms are available
such as decision trees, Support Vector Machines (SVMs), or
Bayesian classifiers. The generated model identifies a user’s
activity based on the incoming feature values. Finally, recent
work focused on self-adaptation of sensor constellations for
activity recognition [51], [52].

VI. CONCLUSION

In this article, we motivated the need of novel productivity
tracking tools for observing and continuously analysing the
academic performance of students. Such a tool is envisioned to
provide a basis for self-improving the academic behaviour of
students and consequently reduce drop-out rates. We presented
a first concept for such a tool based on available campus APPs

Due to the distributed and time-variant nature of the system
as well as the underlying dynamics and heterogeneity of users,
we motivated that a solution can be found in the combina-
tion of technology from the field of collaborative interactive
learning (CIL) with other related fields such as Organic
Computing, crowdsourcing, and collaboration engineering. We
distinguished between two main areas of research, namely
dedicated and opportunistic CIL, that have to be addressed for
finally realising the productivity tracking system (ProTrack).
We outlined the corresponding research challenges which we
have to address to develop a CIL-based ProTrack system.
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