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Abstract 

In today’s race for competitive advantages, more and more companies implement 
innovations in artificial intelligence and machine learning (ML). Although these 
machines take over tasks that have been executed by humans, they will not make human 
workforce obsolete. To leverage the potentials of ML, collaboration between humans and 
machines is necessary. Before collaboration processes can be developed, a classification 
of tasks in the field of ML is needed. Therefore, we present a taxonomy for the 
classification of tasks due to their complexity and the type of interaction. To derive 
insights about typical tasks and task-complexity, we conducted a literature review as well 
as a focus group workshop. We identified three levels of task-complexity and three types 
of interactions. Connecting them reveals three generic types of tasks. We provide 
prescriptive knowledge inherent in the task/interaction-taxonomy. 

Keywords:  Machine Learning, Task, Interaction, Collaboration, Crowdsourcing, Taxonomy 

Introduction 

To enhance performance and create opportunities for increased productivity, more and more companies 
implement innovations in artificial intelligence (AI) and machine learning (ML) with the aim of increasing 
automation of their business processes (Manyika et al. 2017). Recent breakthroughs in these fields, 
demonstrated for example by the computer program AlphaGo which was able to defeat several human 
professional players in the complex board game Go have extended the application range of machines in 
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business as well as daily life. As a consequence, machines are more and more able to take over tasks that 
have previously been executed by humans. This development is raising public concerns about the future of 
work. As reported by Reuters (Reuters 2016), four out of ten young people believe that they will lose their 
jobs to machines. However, smart machines will not make human workforce obsolete. To fully leverage the 
potentials of AI and ML (e.g. new opportunities for added value like greater productivity, higher quality of 
results, new products and services), collaborative work between humans and machines is needed (Bahle et 
al. 2016). This implies that many humans will in future work alongside rapidly learning machines (Manyika 
et al. 2017). From that point of view, humans will not be replaced by machines, but current working forms 
for humans will change, as work activities will be reallocated and collaboration between humans and 
machines is needed. Therefore, the challenge will be to achieve an understanding of typical tasks for 
machines and for humans, and to develop techniques that will support collaboration between humans and 
machines and among themselves. Up to now, it is not clear how collaborative processes have to look like in 
order to effectively and efficiently shape collaboration between interacting humans and systems.  

Combining techniques from the field of information systems (IS) research with techniques from disciplines 
concerned with designing collaborative processes among humans like Collaboration Engineering (Briggs et 
al. 2015) or Crowdsourcing (Durward et al. 2016) seems to be a promising solution. Applying an 
interdisciplinary approach has the potential to add a socio-technical perspective to include insights and 
competences of humans and machines equally. However, before designing collaborative processes, there is 
the necessity to be able to analyze and categorize tasks that exist in this context. This will pave the way 
towards the development of suitable process designs that will ensure an integration of competences of 
humans as well as machines according to their strengths. This raises the following research question. 

RQ: How can tasks in the context of ML be classified based on their complexity and their type of 
interaction? 

Therefore, the aim of this paper is to develop a taxonomy capable of classifying tasks based on their 
complexity and type of interaction. This taxonomy will serve as decision basis for developing suitable 
designs of collaboration. Furthermore, the taxonomy will outline demands to design collaboration as re-
usable work practices to leverage the potentials of ML.  

Methodological Approach 

In this paper, we use Design Science Research (DSR) and the according understanding of theory in DSR as 
a research framework. We structure our paper along Hevner’s (Hevner 2007) three-cycle view (Figure 1). 
First, we start the relevance cycle by identifying a set of unsolved problems inherent in the development of 
learning cyber-physical systems that demand a classification of tasks and interaction types (Section 
‘Introduction’). Second, we initiate the rigor cycle by drawing on justificatory knowledge from AI, ML and 
Active Learning (AL) literature as well as collaboration literature (Section ‘Theoretical and Conceptual 
Background’). To inform our taxonomy, we report the procedures and results of a literature analysis 
(Section ‘Typical Types of Tasks in ML Literature’) and report the procedures and results of a focus group 
workshop to derive insights concerning the origins of complexity in tasks (Section ‘Origins of Task-
Complexity in the Field of ML’). Thirdly, we completed a design cycle and report our taxonomy (Section 
’Taxonomy of Tasks and Interaction Types’). Fourth, we describe possibilities for further research as well 
as limitations of the current study (Section ‘Limitations and Future Research’). Fifth, we complete the rigor 
cycle by adding prescriptive knowledge 1  (Gregor und Hevner 2013) to the literature and close with a 
conclusion (Section ‘Contribution and Conclusion’).  

Referring to the contribution of our research, our solution, the ”Task/Interaction Taxonomy”, represents  
prescriptive knowledge that contributes towards a “theory for design and action2” according to Gregor 

                                                             

1  Prescriptive knowledge describes artifacts designed by humans to improve the natural world. It is 
inherent in the form of models, methods, instantiations, and design theories (Gregor and Hevner 2013) 

2 Design Science Research distinguishes between five types of theory: “theory for analyzing” (says what is); 
“theory for explaining” (says what is, how, why, when, and where); “theory for predicting” (says what is 
and what will be); “theory for explaining and predicting” (says what is, how, why, when, where, and what 
will be); “theory for design and action” (says how to do something) (Gregor 2006)  
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(2006). We inter alia depict justificatory knowledge from AI, ML, AL and CE literatures, and describe 
principles of form and function inherent in our taxonomy. The taxonomy is suitable to classify tasks in the 
context of ML due to their complexity and type of interaction.  

 

Figure 1. DSR Three Cycle View (Hevner 2007) 

Theoretical and Conceptual Background 

Artificial Intelligence, Machine Learning and Active Learning  

AI is a field of computer science. We use the term in the sense of the automation of “activities that we 
associate with human thinking, activities such as decision-making, problem solving, learning” (Russell and 
Norvig 1995). In this sense, AI is the generic term that encompasses a range of approaches and techniques 
including concepts we use in this paper. One of these approaches is the concept of ML. It aims at developing 
computer systems that can autonomously improve with increasing experience (Mitchell 2006). There are 
multiple approaches of how to establish ML, for example deep learning, Bayesian networks and AL. The 
approach of AL starts with plenty of unlabeled data and the active learning system repeatedly asks an oracle 
(usually a human expert) for labels and by this refines its current model. The aim of AL is to achieve 
performance that is comparable to a model trained on a set of completely labeled data while incurring 
labeling costs that are much lower (Calma et al. 2016). Figure 2 illustrates the relations between AI, ML and 
AL, showing that AL is one approach (among others) of ML while AI is a more generic concept, 
encompassing both of them. 

 

Figure 2. Overview of Artificial Intelligence, Machine Learning and Active Learning 

Collaboration in the Context of Machine Learning 

Using the term collaboration, we refer to the discipline of Collaboration Engineering (CE) which aims at 
“designing recurring collaboration processes that can be transferred to groups of humans that can be 
selfsustaining in these processes using collaboration techniques and technology” (Vreede und Briggs 2005). 
In this context, groups of humans can solve tasks collaboratively by engaging in a previously designed and 
validated sequence of collaborative activities. In such a process design, so called “patterns of collaboration” 
are used to structure collaborative activities. (Briggs et al. 2014). Table 1 shows and describes these five 
basic patterns of collaboration. 
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Table 1. Patterns of Collaboration (Briggs et al. 2014) 

Pattern Description 

1. Diverge Activities that lead from fewer concepts to more concepts. 

2. Converge Activities that lead from a state of having many concepts to a focus on few but 
promising concepts. 

3. Organize Activities that lead to a greater understanding of the relationships among 
concepts. 

4. Evaluate Activities that lead to a greater understanding of the possible consequences of 
concepts. 

5. Build Consensus Activities that lead to having more agreement on courses of action. 

 

Furthermore, approaches from the discipline of Crowdsourcing can be useful. Crowdsourcing refers to an 
open call to an anonymous crowd with potential contributors that solve a task (Durward et al. 2016). Those 
approaches inter alia include collaborative peer-production (Brabham 2008) and can be referred to as an 
“online, distributed problem-solving and production model” (Brabham 2008). 

Typical Types of Tasks in Machine Learning Literature 

To derive an understanding of different typical tasks in this context and to achieve comprehension for how 
these tasks can be categorized, we conducted a literature review. We searched five major databases to 
identify relevant ML literature. We focused on title, abstract and keywords and used the search terms 
“complex task” and “machine learning”, as it turned out that using other terms (e.g. “active learning”) led 
to unsatisfactory and/or ambivalent results (e.g. literature from disciplines other than the researched). The 
search led to 868 hits, divided between the five queried databases. Table 2 provides a review of queried 
databases and shows respective hints. 

Table 2. Summary of Queried Databases and Respective Hints 

Database AIS Library IEEE explore ACM DL Emerald Insight Sciencedirect 

Hits 2 396 223 7 240 

 

We analyzed the identified literature as follows: First, we filtered out papers that did not contain specific 
information about tasks. As most of the analyzed papers rather focus on the design of specific technical 
issues, this resulted in 27 papers that we subsequently analyzed in great detail. Second, we extracted the 
discussed task for each of these 27 papers and third, we classified the tasks to circumscribing categories. To 
derive those categories, we searched for similarities in tasks (e.g. application areas of the described 
techniques like text processing or image recognition). Table 3 shows the formed categories and the number 
of assigned papers as well as prompts describing the discussed tasks. 

Our literature analysis reveals three basic categories. Tasks summed up under the category of ‘Natural 
Language Processing’ are concerned with text analysis like for example extracting knowledge from textual 
data in biomedical literature (Khalid and Sezerman 2017) as well as tasks of spoken language processing 
(e.g. in customer care applications) (Tur et al. 2003; Tur et al. 2005). The second category ‘Image/Object 
Recognition’ is made of tasks concerned with recognition of images and objects reaching from handwritten 
digits (Silva and Zhao 2015) to teaching a robot symbols (Kulick et al. 2013). Finally, a third category named 
‘Various Tasks’ was established to sum up tasks that do not fit into the two previously formed groups. This 
category contains a range of tasks like extracting rhythmic patterns from music (Coca and Zhao 2016) or 
solving geotechnical engineering problems (Chou and Thedja 2016). Concluding from the literature review, 
the two most prominent types of tasks in literature are concerned either with NLP or the recognition of 
images and objects.  
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Table 3. Summary of Identified Tasks and Assigned Papers 

Name of Category Natural Language 
Processing (NLP) 

Image/Object 
Recognition 

Various Tasks 

Number of 
Assigned Papers 

11 8 8 

Assigned Papers Chu et al. 2011: Analysis 
of written comments 

Druck et al. 2009: 
Textual data analysis 

Fehrer and Feuerriegel 
2015: Textual data 
analysis 

Giatsoglou et al. 2017: 
Textual data analysis 

Hakkani-Tür et al. 
2006: Spoken language 
analysis 

Hammerton et al. 2002: 
Analysis of syntactic 
structures 

Kadhim and Omar 2012: 
Textual data analysis 

Khalid and Sezerman 
2017: Textual data 
analysis 

Paquet et al. 2010: 
Textual data analysis 

Tur et al. 2005: Spoken 
language analysis 

Tur et al. 2003: Spoken 
language analysis 

Joshi et al. 2012: Image 
recognition 

Kulick et al. 2013: Symbol 
recognition 

Narr et al. 2016: Object 
recognition 

Pronobis et al. 2008: 
Object recognition 

Silva and Zhao 2015: 
Recognition of 
handwritten digits 

Vatsavai 2012: Image 
recognition 

Xiao et al. 2014: Image 
recognition 

Zheng et al. 2017: Image 
recognition 

 

Chou and Thedja 2016: 
Geotechnical 
engineering problems 

Coca and Zhao 2016: 
Rhythm recognition 

He et al. 2016: Fault 
detection 

Leung et al. 2014: Graph 
structure analysis 

Li et al. 2016: Fault 
detection 

Roggen et al. 2013: 
Recognition of sensor 
data 

Sohail and Khanum 
2008: Complex network 
management 

Zhou et al. 2017: 
Analyzing big data 

 

However, looking at the results of the literature review, the tasks represent more or less some kind of 
machine-machine-collaboration. Since innovations in AI and ML will have the potential to change the 
future of work, we concluded that an additional perspective is needed to include tasks in the context of 
human-machine-collaboration. In CE, people make use of sequences of different activities of collaboration 
to solve complex tasks. Likewise, solving complex tasks by human-machine-collaboration can involve 
several activities which may inter alia include NLP and the recognition of images and/or objects. For 
example, a robot that is able to collaborate with humans may have to be able to understand spoken language 
and autonomously interact with its environment (which involves some sort of object recognition). 
Therefore, we assume that a new way of categorizing tasks in this context is needed. Thus, we suggest to 
categorize tasks by their inherent complexity and the type of interaction between humans and machines. 

Origins of Task-Complexity in the Field of ML 

As our aim is to distinguish between tasks according to their inherent complexity and matching them to 
types of interaction, the next step of our research activities was to identify origins of task-complexity in this 
field. In order to acquire the needed understanding of complexity in tasks, we carried out a focus group 
workshop. The workshop consisted of seven senior researchers coming from the disciplines of intelligent 
embedded systems, information systems and knowledge processing. During the workshop, the participants 
brainstormed about origins of complexity in tasks, resulting in 41 contributions. Subsequently, all 
participants presented their contributions to the group in order to achieve clarity. To analyze the data, we 
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followed a qualitative content analysis according to Kohlbacher (Kohlbacher 2006). We documented the 
results of this activity, aggregated duplicates and overlaps and classified the named origins of complexity 
into four categories. Table 4 illustrates the four categories and its origins of task-complexity. 

Table 4. Categories and Assigned Origins of Task-Complexity 

Name of Category Assigned Origins of Task-Complexity 

Composition of 
Interacting Entities 

 Quantity of interacting entities 

 Degree of heterogeneity of interacting entities 

 Required degree of expertise of interacting entities 

 Unknown expertise of interacting entities 
 

Communication Quality  Non-conformity of query answers 

 Error ratio 

 Effort and reliability of communication 
 

Interaction 
Language/Encoding  

 Interaction on different abstraction levels 

 Diverging vocabularies 

 Complex grammar and syntax 
 

Duration of Interaction  Number of needed interactions 

 Length of interactions 

 Time until query response 
 

 

After developing the categories, we interpreted the results and exploratively derived dependencies among 
them. This resulted to our following underlying research assumptions:  

 Research Assumption 1: The number of needed interactions (i.e. ‘Duration of Interaction’) is 
dependent on the number and the expertise of interacting systems and/or humans (i.e. ‘Composition 
of Interacting Entities’).  

 Research Assumption 2: The number of used abstraction levels in communication (i.e. ‘Interaction 
Language/Encoding’) is dependent on the heterogeneity of interacting entities (i.e. ‘Composition of 
Interacting Entities’).  

 Research Assumption 3: The inconsistency of query answers (i.e. ‘Communication Quality’) is 
dependent on the heterogeneity of interacting entities (i.e. ‘Composition of Interacting Entities’).  

Figure 3 visualizes the research assumptions and the identified dependencies between the established 
categories. 

 

 

Figure 3. Influences between Categories of Complexity 

 

We identified the category ‘Composition of Interacting Entities’ as the determining factor for the three 
remaining categories. Origins of complexity that were classified into these three categories are rather 
consequences of factors situated in the category ‘Composition of interacting Entities’ than origins for 
complexity on their own. We therefore conclude that task-complexity in ML is mainly determined by the 
composition of interacting entities (e.g. number, nature and what is already known about them). Hence, we 

Composition of 
Interacting Entities 

Duration of 
Interaction 

Interaction 
Language/Encoding 

Communication 
Quality 
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use the composition of interacting entities as the main factor for characterizing task-complexity. This will 
automatically include the subordinated categories. 

Taxonomy of Tasks and Interaction Types 

After surveying typical tasks in the field of ML with our literature analysis and identifying origins of task-
complexity with our focus group workshop, we used these insights to develop a taxonomy (see Table 5). Our 
literature analysis illustrates the state of the art, whereas the results from the focus group workshop 
illustrate origins of task complexity. Since we aim to create a framework that has the potential to sketch 
opportunities of the future of work among the interplay of humans and machines, we needed to adjust our 
findings and created a taxonomy on a more abstract level. This taxonomy allows classifying tasks among 
several degrees of complexity and several types of interaction. Therefore, we combined the insights of our 
literature analysis and our focus group workshop. Against that background, the types of tasks identified in 
literature mainly refer to machine-machine interaction and, thus, are mainly inherent in the knowledge 
exploitation tasks that we identified in the taxonomy. The categories of task-complexity that resulted from 
the focus group workshops provided important foundations in the process to derive a more abstract 
definition of levels of task-complexity in the taxonomy.  

Based on this, we identified three generic levels of task-complexity and three types of interaction (see Table 
5). This way, the taxonomy classifies tasks due to their complexity and the type of interaction that is used 
to cope with this task. Since the three interaction types also refer to increasing complexity of collaborative 
activities, the taxonomy provides a guide for choosing the appropriate interaction type depending on the 
level of task complexity. Matching the degrees of task-complexity with the appropriate type of interaction, 
we identified three generic representative types of tasks in the cells of the table. Table 5 shows the developed 
taxonomy.   

Table 5. The “Task/Interaction” Taxonomy 

 Interaction Types 

Machine-Machine Machine-Human Human-Human 

Levels of 
Task-
Complexity 

Low Complexity 
Task 

Knowledge 
Exploitation Tasks 

Area of Unexploited Potential 

Average Complexity 
Task 

 Knowledge 
Validation Tasks 

 

High Complexity 
Task 

Area of Arising Questions 
Knowledge 

Creation Tasks 

 

The vertical axis of the taxonomy represents different ‘Levels of Task-Complexity’. We distinguish between 
three basic levels of task-complexity, which are in hierarchical order. 

Low Complexity Task: This type describes a situation in which machines can refer to a correct solution 
space or database. Therefore, they will be able to develop the correct solution on their own. Thus, we 
conclude that machines do not need humans to solve tasks of this type. As in these cases the group of 
interacting entities will be rather small and homogeneous, we assume these tasks to be of low complexity. 
 
Average Complexity Task: Concerning these tasks, machines can refer to a solution space. However, 
solutions need to be verified by oracles (usually human experts) before they can be used. As solving these 
tasks normally needs the input of humans, they can be considered more complex than the group of tasks 
described before. Therefore, we assume these tasks to be of average complexity. 
 
High Complexity Task: This category encompasses situations in which machines have to build a correct 
solution space as a basis first. Therefore, they need humans to propose a solution and create new knowledge. 
A process that needs collaboration between multiple humans. The solutions need to be verified by other 
humans before they can be accepted as correct. Thus, human-human interaction is needed to solve this type 
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of task. As numerous and heterogeneous interacting entities with rather high degrees of expertise will be 
needed we assume these tasks to be of high complexity. 
 
The horizontal axis represents the three ‘Interaction Types’. We distinguish between three types, which are 
in hierarchical order. Depending on the composition of interacting entities, complexity increases with 
collaborative activities, and thus, along the interaction types.   

Machine-Machine Interaction: For these kind of interactions, no humans are needed. Machines interact 
autonomously to solve given tasks.  
 
Machine-Human Interaction: Interactions of this type are characterized by interactions between humans 
and machines. Involved humans typically do not interact among each other. 
 
Human-Human Interaction: In this type of interaction, multiple humans are needed in order to be able to 
find the correct solution for a task. These humans have to collaborate with each other to develop the needed 
information as well as to verify possible solutions. 
 
Matching the degrees of task-complexity with the interaction types, we identified three ‘Generic Types of 
Tasks’ that are defined by its level of task complexity and the interaction type. 

 Knowledge Exploitation Tasks: For this kind of tasks there is already a fully and correctly labeled pool 
of data available that machines can refer to in order to develop a solution. These tasks are defined by a 
‘Low Complexity Task’ and a ‘Machine-Machine Interaction’. 

 Knowledge Validation Tasks: This category consists of tasks that are typically concerned with 
validating collected information (e.g. labeling data and verifying current labels). As an input of oracles 
(e.g. human experts) is needed, we classify them as ‘Average Complexity Tasks’ for which a ‘Machine-
Human Interaction’ is needed. 

 Knowledge Creation Tasks: For this type of tasks, multiple humans typically collaborate to create 
knowledge to establish a solution space for machines to access. Therefore, we categorize them as ‘High 
Complexity Tasks’ for which a ‘Human-Human Interaction’ is needed. 

 
Apart from these three generic types, we identified two areas in the taxonomy that require further 
explanation. Tasks that can be classified into the ‘Area of Unexploited Potential’ may offer potential for 
increased automation. For example, a Low Complexity Task that is solved by a Machine-Human Interaction 
may be fraught with design problems and bear potential to shift it further to the left, into the domain of a 
Machine-Machine-Interaction. Imagine for instance current driver assistance systems in cars that 
recognize speed limit signs and communicate them visually to a human driver. Shifting these interactions 
into the domain of a Machine-Machine Interaction, where the car recognizes signs and changes its speed 
autonomously represents a step towards the development of self-driving cars.  

Some of the tasks that can be classified into the ‘Area of Arising Questions’ may also offer potential for 
increased automation. However, further automation of these tasks may often come with moral and legal 
concerns and can also raise questions of social acceptance. Imagine a High Complexity Task that is solved 
by a Machine-Human Interaction. This is especially the case when algorithms are designed to prepare, 
support and influence human decision making. An example is Equivant’s algorithm that predicts the 
probability of recidivism of convicts to support the decisions of judges. According to a recent report (Angwin 
et al. 2017), the algorithm wrongly predicted a high risk of relapse twice as frequent for African-Americans 
than for whites. Another example is a future algorithm that autonomously judges candidates for a job and 
hires the one that fits best. It provides a useful example for a High Complexity Task that is solved by a 
Machine-Machine Interaction. Using such an algorithm raises questions of social acceptance, as employers 
may want to base their decisions on their knowledge of human nature, intuition or their experience rather 
than on statistic probabilities. 

By matching different levels of complexity of tasks to interaction types, the taxonomy illustrates three 
generic types of tasks in the field of ML based on their complexity and types of interaction. Furthermore, it 
can help to identify tasks that are fraught with design problems and offer potential for further automation. 
Finally, it can be used to detect tasks where further automation may raise questions of social acceptance 
and/or moral and legal concerns. 
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Limitations and Future Research 

Regarding the limitations of our study, we note that the number of participants of the focus group workshop 
seems to be rather small. Since this field of research is rather new, explorative research is needed. Therefore, 
we chose a qualitative approach and selected participants that were experts in the field and started with this 
sample size. Even if qualitative studies are typically characterized by a smaller population, compared to 
quantitative studies, the taxonomy will be re-validated.  

To take the next step for future research, we enlarged the sample of experts from the initial focus group 
workshop. We are currently cooperating with well-known scientists from the fields of intelligent embedded 
systems, information systems and knowledge processing. To acquire expert knowledge, we will conduct a 
Delphi study. In this study, the experts will first review the formed categories of task-complexity. Second, 
we will elaborate opportunities for expanding the taxonomy. For this purpose, the experts will use the 
taxonomy in order to classify tasks from their AI and ML research. Third the experts will brainstorm 
possible new tasks for the future of work to derive promising research opportunities. Against that 
background, this validation procedure seems to be appropriate since it provides several additional 
advantages. It creates a larger pool of typical task examples for the several cells of the taxonomy, which in 
turn will trigger discussions for future research and guidance for classifying tasks. 

Besides that, we work with experts from practice and research and create a case study for each of the three 
‘Generic Types of Tasks’ (Table 5) and design and evaluate the required and occurring collaborative 
activities among humans and machines. This will help to create the foundations for typical techniques to 
cope with various forms of work resulting from the levels of task-complexity and the interaction types. 
Those techniques inter alia focus on designing re-usable designs of collaborative activities that will support 
the interacting entities in solving a task. In this context, we currently run a crowdsourcing campaign and 
implemented a design of a collaborative process to gain insights for the case of the ‘Knowledge Validation 
Task’.  

Contribution and Conclusion 

This paper contributes towards a ‘theory of design and action’ and inter alia provides prescriptive 
knowledge (Gregor 2013) in the form of a taxonomy. The developed taxonomy opens possibilities of 
classifying current as well as arising tasks in the field of ML based on their complexity and their types of 
interaction. It can be used as a basis for identifying tasks for which designing collaboration processes will 
be useful to set the basis for the interplay of humans and machines. 

We conclude, that in near future, human workforce will not be replaced by machines. However, we 
discussed that the development of AI (e.g. learning systems) will fundamentally transform working 
environments by rearranging value-adding processes. In the face of this development, shaping 
collaboration between humans and machines is needed. A taxonomy for the classification of tasks in the 
field of ML opens the possibility to identify situations that require the development of these collaboration 
processes. In this paper, we identified origins of task-complexity that allowed us to distinguish between 
three different levels of task-complexity. We then linked these findings to interaction types, leading to the 
development of a taxonomy for the classification of tasks in the field of ML.  
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