

Please quote as: Knote, R.; Baraki, H.; Söllner, M.; Geihs, K. & Leimeister, J. M.

(2016): From Requirement to Design Patterns for Ubiquitous Computing Applications.

In: 21st European Conference on Pattern Languages of Programs (EuroPlop '16),

Kaufbeuren, Germany.

From Requirement to Design Patterns for Ubiquitous
Computing Applications�
ROBIN KNOTE, HARUN BARAKI, MATTHIAS SÖLLNER, KURT GEIHS, JAN MARCO
LEIMEISTER, Research Center for Information System Design (ITeG), University of Kassel, Germany

Ubiquitous Computing describes a concept where computing appears around us at any time and any location. Respective systems
rely on context-sensitivity and adaptability. This means that they constantly collect data of the user and his context to adapt its
functionalities to certain situations. Hence, the development of Ubiquitous Computing systems is not only a technical issue and
must be considered from a privacy, legal and usability perspective, too. This indicates a need for several experts from different
disciplines to participate in the development process, mentioning requirements and evaluating design alternatives. In order to
capture the knowledge of these interdisciplinary teams to make it reusable for similar problems, a pattern logic can be applied.
In the early phase of a development project, requirement patterns are used to describe recurring requirements for similar
problems, whereas in a more advanced development phase, design patterns are deployed to find a suitable design for recurring
requirements. However, existing literature does not give sufficient insights on how both concepts are related and how the process
of deriving design patterns from requirements (patterns) appears in practice. In our work, we give insights on how trust-related
requirements for Ubiquitous Computing applications evolve to interdisciplinary design patterns. We elaborate on a six-step
process using an example requirement pattern. With this contribution, we shed light on the relation of interdisciplinary
requirement and design patterns and provide experienced practitioners and scholars regarding UC application development a
way for systematic and effective pattern utilization.

• Software and its engineering~Patterns • Software and its engineering~Design patterns • Software and its engineering~Requirements
analysis • Software and its engineering~Software development methods • Human-centered computing~Ubiquitous and mobile
computing • Human-centered computing~Ubiquitous and mobile computing theory, concepts and paradigms • Human-centered
computing~Ubiquitous computing

Additional Key Words and Phrases: Requirements Engineering, Requirement Patterns

ACM Reference Format:
Knote, R., Baraki, H., Söllner, M., Geihs, K., Leimeister, J. M. From Requirement to Design Patterns for Ubiquitous Computing
Applications. In 21st European Conference on Pattern Languages of Programming (EuroPLoP’16), Kaufbeuren, Germany, 2016
DOI: http://dx.doi.org/10.1145/3011784.3011812

1. INTRODUCTION

The concept of Ubiquitous Computing (UC) implies that computing is everywhere around us (Weiser,
1991) and that applications make use of sensor data and personal data to adapt autonomously due to
context changes and personal preferences and profiles. The data may be processed on servers or devices
that are not visible to the user and that may be accessible to third parties. The UC application might
execute actions the user is not aware of and perhaps would not even allow. While this tight interweaving
into the users' everyday lives offers a wide range of exciting application opportunities, it also demands
the consideration of non-technical, social aspects. In this regard, social compatibility has to be kept in
mind throughout the entire development process. That means that UC applications have to adhere to

Author's address: R. Knote, H. Baraki, M. Söllner, K. Geihs, J.M. Leimeister, Research Center for Information System Design
(ITeG), Pfannkuchstr. 1, 34121 Kassel; E-Mail: {robin.knote; soellner; leimeister; geihs}@uni-kassel.de; baraki@vs.uni-kassel.de

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
EuroPLoP '16, July 06 - 10, 2016, Kaufbeuren, Germany
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4074-8/16/07…$15.00
DOI: http://dx.doi.org/10.1145/3011784.3011812

1

From Requirement to Design Patterns for Ubiquitous Computing Applications – Page 2

laws and social norms and factor in the users' perception and trust while at the same time providing
functionalities that are characteristic for UC. Hence, questions of privacy, trust, usability, legal
compliance etc. have to be addressed during system development. To meet this challenge and to provide
proper solutions, software experts have to collaborate with experts from other disciplines.
Since stakeholders from many different disciplines work together towards a common goal, a special
focus has to be laid on eliciting, specifying and documenting requirements. These requirements are
based on normative, social and technical aspects and must be transferred into functional requirements
that can be used for system development. As many real-world problems (e.g., related to trust or law)
are similar for many UC application development projects, using patterns of standardized requirements
seems to be a suitable solution. This consideration does not only apply to requirements engineering, but
is also valid for addressing recurring requirements in the software design process using
interdisciplinary design patterns. However, literature about integrating both requirements and design
patterns is sparse and thus their relation in practical contexts has not been highlighted sufficiently.

In this paper, we introduce our field-tested approach of combining both concepts. We present a process
for deriving design patterns from normative requirements in the spotlight of UC applications, focusing
on social acceptability and considering both privacy and usability issues. In section 2, we will give an
overview of the background and our motivation grounded in the VENUS project. Section 3 discusses
related work to lay the foundation for our approach. The requirements and requirement patterns that
we use in this paper to demonstrate our process are presented in section 4. In section 5, we elaborate
on the process of finding suitable design patterns for the requirements which is our core contribution.
We conclude with giving a short summary and highlighting future perspectives in section 6.

2. BACKGROUND

In the VENUS project (Geihs et al., 2014), we have worked out a comprehensive interdisciplinary
development methodology for the design of socially aware UC applications. The disciplines represented
in VENUS were computer science, jurisprudence, ergonomics and trust research. The created
methodology supports interdisciplinary teams to work together in an efficient and structured manner.
The core of the methodology is described in the following sections. The detailed approach can be found
in (David et al., 2014).

Briefly, the VENUS methodology proposes to formulate initially the functional requirements in a
technical but abstract way so that they do not provide any concrete technical solutions and such that
they are understandable for experts from different areas. To this end, potential users and the
aforementioned domain experts should be involved. The next step is to determine normative
requirements that can be derived from laws, norms, standards and other provisions relevant to the
application. They have to be translated to functional requirements with the aid of the respective domain
experts. Hence, the VENUS methodology is an iterative development approach consisting of the phases:
analysis of needs, requirements management, conceptual design, software design with implementation
and in-situ evaluation (Hoffmann and Niemczyk, 2014).

VENUS manifests the ‘big picture’ in which the approach described in section 5 of this paper was used
to find suitable design patterns from elicited requirements and, thus, is applied to integrate the phases
‘requirements management’ and ‘conceptual design’. Hence, the process described in this paper is an
integral part of the VENUS methodology which is of particular interest since it has not been specified
in detail within related publications yet. We are particularly interested in the requirements
management and elicitation phase as it is where requirements from various disciplines are elaborated
and merged. Besides usual functional and quality requirements, requirements for legal compatibility,
usability and trustworthiness are considered. Domain experts derive these requirements from
normative sources by concretizing the provisions with regard to the technical system. The goal is to
translate these provisions to technical requirements. This is done in several steps by the respective
domain experts. The detailed procedure can be found in (Hoffmann and Niemczyk, 2014).

 From Requirement to Design Patterns for Ubiquitous Computing Applications – Page 3

Although the VENUS development method fosters the interdisciplinary teamwork and supports the
different disciplines to work out proper socio-technical solutions, we experienced that developing such
applications remains a time-consuming and complex task. For that reason, in previous work we have
analyzed three demonstrators (i.e., prototype applications that we have developed within our research
project and evaluated to show whether and how the VENUS methodology works) implemented during
the VENUS project and searched for recurring design patterns in the demonstrators that were related
to interdisciplinary concerns about how to achieve certain aspects of the social embedding of the
applications. The demonstrators have been designed and implemented by separate development teams
in different application domains, i.e., Meet-U in mobile computing (Göschka and Haridi, 2012), Connect-
U in social networking (Atzmüller et al., n.d.), and Support-U in ambient assisted living (Hoberg et al.,
2012). Domain experts helped us in an iterative process to consolidate the list of extracted patterns and
to pick out those that are applicable for common UC applications. The collection of patterns created is
presented in (Baraki et al., 2015).

However, these design patterns address implementation aspects but do not incorporate the phases of
requirements engineering. Hence, we created and extracted requirement patterns (Hoffmann, 2014) by
analyzing the demonstrators regarding the requirement elicitation phase. Requirement patterns are an
approach to reuse recurring requirements (Wieringa and Persson, 2010) and to identify and document
software requirements (Robertson and Robertson, 2006). Requirement patterns are applied for eliciting
and analyzing requirements and can be considered a collection of knowledge and experience, which can
be reused in development projects by adaptation (Wahono, 2002). Requirement patterns contain
templates to describe a standardized requirement and other relevant information in tabular form (Toro
et al., 1999). These are, for example, the goal of the standardized requirement and relations to other
patterns. To ease adaptation, attributes can be defined with usable content. However, only content that
already has been elaborated and tested carefully should be predefined.

In this work, we try to connect both types of patterns, i.e., interdisciplinary requirement and design
patterns, to establish a clearer structure for their utilization. The application of development methods,
such as our VENUS method, will be simplified and accelerated by this kind of pattern languages since
they are offering guidance over long phases in the development process and over several disciplines.

3. RELATED WORK

Presently, there is only limited work addressing interdisciplinary design patterns in the field of
Ubiquitous Computing. Many works rather focus on enabling adaptivity or context-awareness but do
not consider crosscutting aspects like transparency, trust, privacy and informational self-
determination. The following section is listing primarily related work that adopts a clear
interdisciplinary viewpoint.

Lahlou and Jegou (2004) propose nine guidelines, called European Disappearing Computer Privacy
Design Guidelines. Most of them, i.e., Think Before Doing, Good Privacy Is Not Enough and Re-visit
Classic Solutions, give some clues which thoughts developers should take up in general. Others are
geared to the principles introduced by the OECD (OECD et al., 2003). Altogether, Lahlou et al. indicate
problems and challenges developers have to tackle. Many of these guidelines can be considered indeed
as motivation for requirement and design patterns, but not as intelligible instructions developers and
requirement engineers can apply.

One of the first publications looking at privacy and ubiquitous computing together is proposed by
Langheinrich (2001). He introduces several fundamental principles such as the principle of notice in
which users have to be informed by announcements first and foremost if data is collected about them.

From Requirement to Design Patterns for Ubiquitous Computing Applications – Page 4

Further principles like the choice and consent principle were justified on the basis of the EU Data
Protection Directive 95/46/EC and the fair information practice principles (FIPP) that were first
described in the Privacy Act of 1974 (5 U.S.C. § 552a as amended). Langheinrich considers them from
the perspective of Ubiquitous Computing and suggests approaches of a general manner. His work does
not imply common solutions that support their concrete implementation or formulation.

Chung et al. (2004) introduce 45 design patterns for ubiquitous systems, grouped into the four groups
Ubiquitous Computing Genres, Physical-Virtual Spaces, Developing Successful Privacy, and Designing
Fluid Interactions. Their intention is to provide an initial list of design patterns that can be enhanced
and extended. In the context of this work, especially the fifteen design patterns devoted to privacy and
the eleven patterns related to fluid interactions are of interest. Their very comprehensive set of design
patterns did not emerge from the authors’ own software projects but from studying the relevant related
literature. For example, their Fair Information Practices pattern lists the aforementioned practices of
the 1970s as solution and refers to Langheinrich's work (Langheinrich, 2001). Other patterns reproduce
principles like the choice and consent principle, but do not provide clear instructions how to put them
into practice. In contrast to our approach, Chung et al. consider privacy and usability separately. In our
work, we take requirements from different disciplines at the same time into account since they can
oppose each other and thus have to be coordinated.

Ruiz-López et al. (2013) propose various patterns to address non-functional requirements in ubiquitous
computing systems. Most of them refer to adaptivity, reliability and security, but two of them, i.e., the
Pseudonymity and the Human Factor patterns, are classified as patterns concerning ethics. The Human
Factor pattern, for example, is a hybrid approach that allows the user to perform certain activities on
his own instead of leaving it up to the software. According to this pattern, developers should consider
the possibility to only assist users or to let users do things on their own to improve, inter alia, their well-
being. Here again, detailed information about the pattern and possible scenarios and examples are
missing. In fact, Ruiz-Lopez et al. present an excellent analysis, but their conclusions are formulated
on a very abstract level and without concrete connections to interdisciplinary design guidelines.

Other works that consider interdisciplinary patterns from a more general viewpoint cannot be applied
on UC systems without further considerations. Most of them focus on pure Internet applications or on
traditional application areas (Hafiz, 2013). The characteristics of UC systems, especially their
restrictions and their differentiating capabilities, which encompass context-awareness and adaptivity,
necessitate adapted or new design patterns.

Considering the principles, guidelines and the patterns introduced in this section, two main problems
can be identified. Firstly, the descriptions are too vague or they concentrate on pure technical challenges
like adaptation and context-awareness, and thus are too detailed. An approach is required that provides
support from the initial requirements through to their realization. Our approach is assembling
interdisciplinary design patterns and requirement patterns tailored to UC applications.

4. REQUIREMENT PATTERNS

Since we aim at deriving patterns for recurring requirements, we follow Landay and Borriello (2003)
who argue that requirements and designs are ‘recurring’ if they can be found in at least three good
implementations. Considering our demonstrators Meet-U, Connect-U and Support-U, those
requirements and design guidelines that are used for all three of them can be described in a pattern
format. Thus, we identified nine requirements that have been equally considered and are valid for all
demonstrators. These requirements, however, address system properties to improve the
trustworthiness of the UC application. The requirements are (Baraki et al., 2014; Hoffmann, 2014):

Information about functions

 From Requirement to Design Patterns for Ubiquitous Computing Applications – Page 5

Users want to understand how the UC application works. To predict and anticipate the application’s
behavior, the user needs information about its functions. Hence, the application should inform the users
about how and why they function in a certain situation. Although the results of using the application
may be the same, the users tend to question a system’s result if they do not understand how it has
arisen. The functionality of the application should be easy to understand for the user. Applications
should at least provide explanation for the ‘how’ question. Furthermore, the application should provide
explanation for the necessity of required data input.

Explanation of Processes
To foster understandability as a determinant of trust, the application should inform the user about how
it proceeds to reach a certain goal. Compared to the Information about functions requirement, the
explanation of processes and algorithms goes more into detail and considers the technical realization.
The level of explanation should be adapted to the experience and expectations of the individual user.
However, in case of innovative algorithms it is necessary to find a trade-off between providing sufficient
explanation and keeping corporate secrets.

Signaling the Function Status
This requirement aims at addressing a user’s need for transparency. The application should provide an
overview on which functions are executed as well as why and how they are executed. This should lead
the application’s behavior to be transparent for the user who thus better understands how the
application works.

Level of Automation of Functions
One dilemma in designing trustworthy UC systems is to give the user enough control over the
application while on the other hand establish a sufficient workflow. However, one major challenge in
the development phase is to determine to which degree the application may act autonomously (without
explicitly requesting user input) so that the users will not lose the feeling of control. Thus, to capture
this dilemma the application should provide users control over the level of automation so that they can
adapt it to their preferences and level of trust in the application.

Control of Processes
To complement the user’s demand for control, the application should provide opportunities to intervene
and control depending on its level of automation. This may include informing users about autonomously
executed tasks and offering them an ‘undo’ functionality. In case that the user executes the task
manually, it may be necessary that the system requires a confirmation that the user is aware of the
consequences his actions may have.

Agreement to Functionality
To foster the user’s perception of control over the UC application’s functionality, it should request the
user to confirm the functionalities. This request should appear right before the application was started
for the first time. Furthermore, the users should be able to revoke their confirmation at any time.

Configurability
In order to build trust, the perceived adaptability of the UC application to a user’s wishes and demands
is an important criterion. The wish for a personalized system thereby inherits the need for a more
competent system from a user’s perspective. Thus, the functions of a UC application should provide
options for personalization, since users may go different ways to reach their goals and the system should
adapt to this circumstance by facilitating users to do so. The options for personalization should meet
the users’ demands. In addition, the configuration of the application should be intuitive to the user.

Assessment of Output

From Requirement to Design Patterns for Ubiquitous Computing Applications – Page 6

A user’s perception of the output quality effects an application’s trustworthiness. Therefore, users need
an overview of how accurate and complete the information output is. In order to enable users to evaluate
the output, the application should provide information about its accuracy and completeness.

Logging Processes
To increase trust by addressing transparency and non-repudiation, actions should be protocolled. It is
thereby especially important for a user to know which process steps have been conducted autonomously
without requiring user input. Hence, an application should provide an overview of both manually and
autonomously conducted process steps.

For describing recurring requirements in a pattern structure, we followed a theory-driven approach.
The requirements mentioned above have been derived from elements to build trust (also often called
antecedents, dimensions, determinants or principles of trust) in information systems (IS), which can be
found in respective IS literature. In the context of this work, we rely on work about trust summarized
and enhanced by Söllner et al. (2012). However, since these trust-building elements are recurring and
build the basis for the requirements, applying a pattern logic is applicable at this point. Figure 1
exemplarily shows how the requirement patterns have been documented. The structure is based on
recommendations made by Franch et al. (2010) and complemented by Hoffmann (2014). The pattern
structure has been developed as part of a dissertation project. It has been derived from relevant
literature and was adapted to the context of trust, usability and jurisprudence. Due to space limitation,
we cannot elaborate on the entire development process in this contribution. However, Hoffmann (2014)
explicitly describes the approach of pattern (structure) development.

Figure 1. Example of a requirement pattern - V-S-15: Control of Processes (Hoffmann, 2014)

 From Requirement to Design Patterns for Ubiquitous Computing Applications – Page 7

5. SELECTING DESIGN PATTERNS

After eliciting the requirements for UC applications and transferring them to a pattern format, we
needed to find design approaches that are most promising to meet them. We therefore followed a six-
step process in which we involved various experts for requirements engineering, human-computer-
interaction and design as well as domain experts. In the following, we present the steps of this process
by exemplarily using the requirement introduced in section 4 (Control of Processes).

 Ideate design alternatives
To find design principles that fit to the demonstrators’ requirements, we conducted a workshop with
experts in human computer interaction (HCI) to brainstorm suitable design ideas. The workshop was
guided by the question, which design guidelines for the application could be identified to best meet the
requirements. At this point, we set no limitations regarding realizability, potential effort or conflicts
with other requirements or design alternatives. As a result, the experts described several design
alternatives for each requirement. For the example requirement Control of Processes, three design
alternatives could have been identified:

Control of Autonomous Adaptation
When the UC application autonomously adapts itself to a certain situation in order to provide new or
better functionalities, users often experience a loss of control over the system’s processes. Thus, users
should receive a notification and be able to confirm or decline the context-dependent change of functions.
In every case, it should be possible to withdraw the confirmation/declination at any time.

Emergency Button
One way to foster users’ control of processes in which personal data is used to deliver new or better
functionalities can be to provide the opportunity to stop personal data usage whenever the user wants.
Therefore, an ‘emergency button’ should be implemented to intervene the collection and utilization of
(peripheral) personal data. The user should be aware of this button and its functionality. It should be
reached without spending much effort, either by opening the menu, the settings display or via shortcut.
Pushing the button should open a pop-up window where the user is informed about the consequences.
After confirmation, the UC application should run without collecting personal data anymore.

Level of Action Confirmation
To give users control over the applications’ processes, users should be able to set a level of which actions
they are willing to confirm and which ones they will not. Therefore, the settings menu should provide
the option to configure the confirmation frequency depending on how critical an action is. The
application should in turn adapt to this configuration.

 Rate design alternatives
In a next step, the design alternatives had to be discussed, rated and ordered. We therefore reflected
the overarching goals we wanted our application design to follow. From an ergonomic point of view, we
aimed at developing socially acceptable applications as we understand the technical systems as parts of
more complex sociotechnical systems, in which the user and the process of usage has to be regarded
within the entire development process. Hence, we talked to HCI experts to assess the design
alternatives regarding perceived usefulness and usability. In this step, we also addressed the technical
realizability of the design alternatives. This includes both technical feasibility and economic (i.e., on a
project management level) effort. To assess these values, software engineers and software project
managers were consulted to give an appraisal. Furthermore, we needed to consider the degree of
requirement fulfillment. Since the requirements were elicited literature-based, researchers and
practitioners who have knowledge in trust-oriented software design have been invited to evaluate the
design alternatives by challenging them against our requirements.

From Requirement to Design Patterns for Ubiquitous Computing Applications – Page 8

As a result, the idea Control of Autonomous Adaptation has been rated very useful by all stakeholders,
since it provides an easy to implement and user-friendly alternative to provide process control to the
user. An Emergency Button has been rated as a more complex (and thus more expensive) alternative,
since all personal (and peripheral) data have to be identified in advance and intervention functionalities
have to be implemented in many processes. However, from an HCI perspective this functionality has
been valued as useful, since it provides an intuitive solution to the challenge of regarding a user’s
informational self-determination. The design idea Level of Action Confirmation has been valued as very
complex to realize. The development process would need to include finding measures for criticality,
defining all actions’ critical level and design process modules that are active or inactive depending on
the configuration. From a user’s viewpoint, the result of implementing this design idea may be twofold:
on the one side, it would improve the controllability of the process if configured right. On the other side,
if the level of action confirmation would have been set to strict (e.g., by accident or not knowing what it
does), the amount of confirmation pop-us may be counterintuitive and annoying to the user.

 Select design alternatives(s)
After different experts had rated the design ideas, the goal of this step was to find suitable design
alternatives for implementation by identifying potential conflicts, dependencies or relations among the
design alternatives and other specifics outside of the respective requirement-design relation (i.e., design
alternatives for other requirements). Therefore, requirement engineers and solution designers were
confronted with the rating results.

As a result of discussing the examples mentioned above, Control of Autonomous Adaptation and
Emergency Button appear to complement each other to address the requirement appropriately. They
represent comparably easy-to-implement design alternatives with no conflicts within or outside the
requirement-design relation. As opposed to this, Level of Action Confirmation is a more complex solution
alternative for which the experts claim the effort will not justify the expected user need. Furthermore,
this design alternative shows conflicts with actions autonomously conducted by the application, since a
high level of action confirmation would possibly interrupt the applications’ workflow repeatedly and
make it unusable. Hence, Control of Autonomous Adaptation and Emergency Button were chosen as
design guidelines, whereas Level of Action Confirmation was dismissed.

 Implement design guideline(s)
In this process step, the selected design guidelines were implemented in our demonstrators Meet-U,
Connect-U and Support-U. We thereby followed the development process described in the VENUS
method. It basically contains the following steps (Hoffmann and Niemczyk, 2014):

� Describe Use Cases to comprehend users’ needs for a certain functionality and their approaches
to use the application

� Design Data and Function Elements visible to (and if needed editable for) the user (e.g., ‘User
profile’ as data element and ‘Edit profile name’, ‘Edit interests’ etc. as related functions)

� Design Workflows for the use cases and Sitemaps to structure workflows
� Design Function Layout (i.e., wireframes) to transfer textual information and function elements

to graphical elements
� Design visual user interface
� Develop Prototypes to enable evaluation

 Evaluate design
The evaluation of the implementation aimed at assessing, whether the requirements have correctly and
sufficiently been addressed by the design chosen. Therefore, prototypes have been developed and
iteratively evaluated by experts to make adaptions as early as possible. The evaluation is essential to
cast design guidelines into design patterns: only if a design is proven to sufficiently and correctly meet
given requirements, we transfer it into a design pattern. In the VENUS method, evaluation and

 From Requirement to Design Patterns for Ubiquitous Computing Applications – Page 9

validation methods include expert validation, simulation-driven evaluation and laboratory evaluation.
A detailed description of the methods and their applicability for the development of UC applications is
given by Hoffmann and Niemczyk (2014). For our applications, the design was evaluated and adapted
until experts valued it appropriate to fulfill the given requirements.

 Formulate design pattern(s)
To simplify and accelerate the interdisciplinary development process based on recurring requirements,
enhancing design guidelines (i.e., solution) by information about the intent, affecting forces, the context
and possible consequences will be helpful for context-dependent development. This enhancement
results in reusable interdisciplinary design patterns. Whereas requirement patterns support the
identification and documentation of requirements, design patterns help implementing a technical
system design with regard to requirement fulfilment. The structure of the interdisciplinary design
patterns is described in detail by Baraki et al. (2014). Table 1 provides an excerpt of the design patterns
we used as an example for describing our process.

Table 1. Example Design Patterns (excerpt) (Baraki et al., 2014)

Pattern
name

Problem Forces and Context Solution Consequences

Control of
Auto-
nomous
Adaptation

Autonomous
adaptations can
result in
usability
problems. The
goal of the
pattern is to
prevent the
feeling of loss of
control. Users
may sense a loss
of control if the
behavior of an
application is
not
comprehensible
or if the
behavior
disturbs the
current
interaction with
the application.
The pattern
helps to create
understandable
autonomous
adaption and
prevents the
feeling of loss of
control.

Informational self-
determination:
To support the user's self-
determination in case of
autonomous adaptation, the
ultimate decision-making
authority has to remain with
the user - otherwise the system
can adapt to unintended and
irreversible states.
Transparency:
The autonomous adaptation is
a black-box concept to the user.
If the user does not receive
information about next
adaptation steps nor the
possibility to govern
automatically executed actions,
he will experience loss of
control and a missing overview
on the different states and
steps.

The user should be enabled to
keep control of autonomous
adaptations. This prevents the
feeling of loss of control. Two
cases have to be distinguished:
1) The user is currently
interacting with the
application. In this case, the
application should notify the
user about the upcoming
adaptation and enable the user
to determine if the application
should adapt. The user should
have a choice to accept, decline
or delay the adaptation.
2) The user is currently not
interacting with the
application. This means that
the adaptation can be
performed. However, the
application needs to provide
the user an option to revert the
adaptation.
Adaptations with substantial
effects on the system should be
recorded in a history. Such a
change may be the switching
off of a surveillance system or
of a ringtone. The adaptation
design needs to be tailored to
the application domain,
development platform, and
target user group. The
cooperation with a usability
engineer and/or a trust
engineer is recommended.

The pattern is
influenced by
and influences
the user
interface design
of the
application. The
adaptation
notifications
need to be
integrated into
the user
interface
design.

From Requirement to Design Patterns for Ubiquitous Computing Applications – Page 10

Emergency
Button

This pattern
should be
applied if the
application
collects and uses
personal data. It
enables the user
to halt collection
and use of his
personal data in
a simple
manner at any
time.

Informational self-
determination:
The appliance of this pattern
supports the user's right to
informational self-
determination by disabling any
use or gathering of personal
data by the application. It
enables the user to maintain
control of his/her own data.
Trust:
 By providing a mechanism to
the user to disable the
collection and use of personal
data, the user's acceptance and
trust into the application can
increase. This holds especially
true in that situations where
the user wants to be invisible
to the application.

The implementation and the
user interface design of an
emergency button depend on
the application domain and
development platform. The
button should be easily
accessible at all times. It is
important to give feedback to
the user after activating the
button. After pressing the
button, the system stops
immediately collecting and
using personal data. Herein,
all data from which other
personal data can be inferred
is included. If pressing the
button impairs application
functionalities, the application
highlights these functions to
provide visual feedback.

When pressing
the button, all
functionalities,
which require
personal data,
need to be
deactivated to
prevent errors
at runtime. The
Emergency
Button Pattern
can be combined
with the
Enable/Disable
Functions
Pattern which
addresses
similar
concerns.

As a result of our process, validated design patterns could have been identified that match the
requirements (patterns) elicited from literature (Table 2).

Table 2. Requirement Patterns and related Design Patterns (Baraki et al., 2014)
REQUIREMENT PATTERN DESIGN PATTERN
Information About Functions On Demand Explanation
Explanation of Processes Abridged Terms and Conditions
Signaling the Function Status Trust and Transparency
 Control of Autonomous Adaptation
Level of Automation of Functions Control of Autonomous Adaptation
Control of Processes Control of Autonomous Adaptation
 Emergency Button
Agreement to Functionality Emergency Button
 Enable/Disable Functions
Configurability Enable/Disable Functions
Assessment of the Output Context State Indication
Logging Processes Data Access Log

6. CONCLUSION

This paper describes an approach of finding suitable design patterns based on requirements for
developing socially acceptable UC applications as part of the VENUS method. Since the roles and
dependencies of requirement and design patterns have not yet been clarified sufficiently in prior work,
we aim at making a contribution to gain a better understanding to this. As a result of our work, we
experience the consecutive utilization of design and requirement patterns as very useful to solve
foundational design problems (e.g., to design trust-building elements). Admittedly, following a process
similar to the one we described requires high operational and organizational effort, since many
stakeholders have to be involved to define and validate the patterns. This circumstance, however, is
counterbalanced by the effort saved when applying the patterns with minor adaptions regarding a
specific problem context. We thus value an integrative approach in which design patterns are derived
from requirements (patterns) as useful to bridge gaps in the early phase of system development, where
recurring requirements call for similar solutions. Furthermore, we hope to assist practitioners in the

 From Requirement to Design Patterns for Ubiquitous Computing Applications – Page 11

field of requirements and/or systems engineering by providing an example process that can be seen as
a reference for developing, selecting and deploying design alternatives based on requirements.

7. ACKNOWLEDGEMENTS

We want to thank our Shepherd Andreas Fiesser for the valuable suggestions which helped improve
our paper in the shepherding process. We would further like to thank the participants of the
EuroPLoP’16 workshop: Padmalata Nistala, Nazila Gol Mohammadi, Johannes Iber, Jose Carlos Ciria
Cosculluela, Ruslan Batdalov and Christopher Preschern. We benefited a lot from their comments and
suggestions.

REFERENCES

Atzmüller, M., Macek, B.E., Hoffmann, A., Kibanov, M., Scholz, C., Söllner, M. and Stumme, G. (n.d.), “Connect-U – Development
of Ubiquitous Systems for Enhancing Social Networking”, in David, K., Geihs, K., Leimeister, J.M., Roßnagel, A., Schmidt,
L., Stumme, G. and Wacker, A. (Eds.), Interdisciplinary Design of Socio-technical Ubiquitous Systems, Springer
(forthcoming).

Baraki, H., Geihs, K., Hoffmann, A., Voigtmann, C., Kniewel, R., Macek, B.-E. and Zirfas, J. (2014), Towards Interdisciplinary
Design Patterns for Ubiquitous Computing Applications, ITeG Technical Reports, Vol. 2, Kassel University Press, Kassel.

Baraki, H., Geihs, K., Voigtmann, C., Hoffmann, A., Kniewel, R., Macek, B.-E. and Zirfas, J. (2015), “Interdisciplinary design
patterns for socially aware computing”, Proceedings of the 37th International Conference on Software Engineering, Vol. 2, pp.
477–486.

Chung, E.S., Hong, J.I., Lin, J., Prabaker, M.K., Landay, J.A. and Liu, A.L. (2004), “Development and evaluation of emerging
design patterns for ubiquitous computing”, DIS '04 Proceedings of the 5th conference on Designing interactive systems:
processes, practices, methods, and techniques, pp. 233–242.

David, K., Geihs, K., Leimeister, J.M., Roßnagel, A., Schmidt, L., Stumme, G. and Wacker, A. (Eds.) (2014), Socio-technical Design
of Ubiquitous Computing Systems, Springer International Publishing, Cham.

Franch, X., Palomares, C., Quer, C., Renault, S. and Lazzer, F. (2010), “A Metamodel for Software Requirement Patterns”, in
Wieringa, R. and Persson, A. (Eds.), Requirements Engineering: Foundation for Software Quality, Lecture Notes in Computer
Science, Vol. 6182, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 85–90.

Geihs, K., Niemczyk, S., Roßnagel, A. and Witsch, A. (2014), “On the socially aware development of self-adaptive ubiquitous
computing applications”, it - Information Technology, Vol. 56 No. 1, pp. 1–41.

Göschka, K.M. and Haridi, S. (Eds.) (2012), Distributed Applications and Interoperable Systems, Lecture Notes in Computer
Science, Springer Berlin Heidelberg.

Hafiz, M. (2013), “A pattern language for developing privacy enhancing technologies”, Software: Practice and Experience, Vol. 43
No. 7, pp. 769–787.

Hoberg, S., Schmidt, L., Hoffmann, A., Söllner, M., Leimeister, J.M., Voigtmann, C., David, K., Zirfas, J. and Roßnagel, A. (2012),
“Socially acceptable design of a ubiquitous system for monitoring elderly family members”, Proceedings of Sozio-technisches
Systemdesign im Zeitalter des Ubiquitous Computing (SUBICO), pp. 349–364.

Hoffmann, A. (2014), Anforderungsmuster zur Spezifikation soziotechnischer Systeme: Standardisierte Anforderungen der
Vertrauenwürdigkeit und Rechtsverträglichkeit, Kassel University Press, Kassel, Germany.

Hoffmann, A. and Niemczyk, S. (2014), Die VENUS-Entwicklungsmethode. Eine interdisziplinäre Methode für soziotechnische
Softwaregestaltung, ITeG Technical Reports, Vol. 1, Kassel University Press, Kassel.

Lahlou, S. and Jegou, F. (2004), European disappearing computer privacy design guidelines, Version 1.1.
Landay, J.A. and Borriello, G. (2003), “Design patterns for ubiquitous computing”, IEEE Computer, Vol. 36 No. 8, pp. 93–95.
Langheinrich, M. (2001), “Privacy by design - principles of privacy-aware ubiquitous systems”, in Abowd, G.D., Brumitt, B. and

Shafer, S. (Eds.), Ubicomp 2001: Ubiquitous computing: International Conference proceedings, Springer, Berlin, New York,
pp. 273–291.

OECD, Organisation for Economic Co-operation and Development (2003), Privacy Online: OECD Guidance on Policy and Practice,
OECD Publishing.

Robertson, S. and Robertson, J. (2006), Mastering the requirements process, Addison-Wesley Professional, Boston.
Ruiz-López, T., Noguera, M., Fórtiz, M. and Garrido, J.L. (2013), “Requirements Systematization through Pattern Application in

Ubiquitous Systems”, in Ambient Intelligence-Software and Applications, Springer, pp. 17–24.
Söllner, M., Hoffmann, A., Hoffmann, H., Wacker, A. and Leimeister, J.M. (2012), “Understanding the Formation of Trust in

IT Artifacts”, ICIS 2012 Proceedings.
Toro, A.D., Jiménez, B.B., Cortés, A.R. and Bonilla, M.T. (1999), “A Requirements Elicitation Approach Based in Templates and

Patterns”, Workshop em Engenharia de Requisitos 1999, pp. 17–29.
Wahono, C. (2002), “On the Requirements Pattern of Software Engineering”, Proceedings of the Temu Ilmiah XI, pp. 1–7.
Weiser, M. (1991), “The computer for the 21st century”, Scientific American, Vol. 265 No. 3, pp. 66–75.
Wieringa, R. and Persson, A. (Eds.) (2010), Requirements Engineering: Foundation for Software Quality, Lecture Notes in

Computer Science, Springer Berlin Heidelberg, Berlin, Heidelberg.

	JML_609
	EuroPLoP16-Knote-et-al-From-Requirement-to-design-patterns_final_accept_acm.pdf

