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Abstract—Active learning (AL) is a machine learning paradigm where
an active learner has to train a model (e.g., a classifier) which is in
principle trained in a supervised way. AL has to be done by means of
a data set where a low fraction of samples (also termed data points or
observations) are labeled. To obtain labels for the unlabeled samples,
the active learner has to ask an oracle (e.g., a human expert) for labels.
In most cases, the goal is to maximize some metric assessing the
task performance (e.g., the classification accuracy) and to minimize the
number of queries at the same time. In this article, we first briefly discuss
the state-of-the-art in the field of AL. Then, we propose the concept of
dedicated collaborative interactive learning (D-CIL) and describe some
research challenges. With D-CIL, we will overcome many of the harsh
limitations of current AL. In particular, we envision scenarios where the
expert may be wrong for various reasons. There also might be several or
even many experts with different expertise who collaborate, the experts
may label not only samples but also supply knowledge at a higher level
such as rules, and we consider that the labeling costs depend on many
conditions. Moreover, human experts may even profit by improving their
own knowledge when they get feedback from the active learner.

1 INTRODUCTION

Machine learning is based on sample data. Sometimes, these
data are labeled and, thus, models to solve a certain problem
(e.g., a classification or regression problem) can be built
using targets assigned to input data of the model. In other
cases, data are unlabeled (e.g., for clustering problems)
or only partially labeled. Correspondingly, we distinguish
the areas of supervised, unsupervised, and semi-supervised
learning. In many application areas (e.g., industrial quality
monitoring processes, intrusion detection in computer net-
works, speech recognition, or drug discovery) it is rather
easy to collect unlabeled data, but quite difficult, time-
consuming, or expensive to gather the corresponding tar-
gets. That is, labeling is in principal possible, but the costs
may be enormous.

This article focuses on a substantial advancement of
active learning (AL), a machine learning paradigm which is
related to semi-supervised learning.

AL starts with an initially unlabeled or very sparsely
labeled set of samples and iteratively increases the la-
beled fraction of the training data set by “asking the right

questions”. These questions are answered by humans (e.g.,
experts in an application domain), by simulation systems,
by means of real experiments, etc., often modeled by an
abstract “oracle”. Basically, the “idealized” goal of AL is to
obtain a model (e.g., a classifier or a regression model) with
(almost) the performance of a model trained with a fully
labeled data set at (almost) the cost of an unlabeled data set.
In the following, the framework consisting of a knowledge
model with machine learning techniques, pools of unlabeled
and (when available) labeled data, and a unit that selects
unlabeled samples for queries and controls the training of
the model will be referred to as active learner.
Often, the following assumptions are made in AL:

o The labeling process starts with an initially labeled
set of samples and assumes well-defined learning
tasks (e.g., the number of classes is given in advance).

o The oracle labels single samples or sets of samples
(called queries depending on the AL type, see Sec-
tion [2) presented by an active learner.

e The oracle is omniscient and omnipresent, i.e., it
always delivers the correct answers and it is always
available.

e The labeling costs for all samples are identical.

These assumptions impose severe limitations for many
applications. For this reason, the following key challenges
regarding an extension of AL can be identified:

Challenge 1: An expert may be (more or less) wrong
for various reasons, e.g., depending on her/his experience
in the application domain (we still assume we have no
malicious or deceptive experts that cheat or attack the active
learner).

Challenge 2: There might be several or even many ex-
perts with different expertise (e.g., different degree or kind
of experience) who may collaborate to provide the active
learner with labels.

Challenge 3: The experts may label not only samples but
also other kinds of queries to provide knowledge at a higher
level (e.g., by assigning a conclusion to a presented premise
of a rule).



Challenge 4: The labeling costs depend on many con-
ditions, e.g., whether samples or rules are labeled, on the
location of samples in the input space of a model (i.e., mak-
ing labeling more or less difficult), the degree of expertise of
a human, etc.

Challenge 5: The experts want to benefit from the active
learner by receiving feedback in order to improve their own
knowledge.

Challenge 6: The learning task may require a “lifelong”
learning of the system (e.g., if the process or environment
from which the measured data originate is time-variant).

Moreover, there may be several tasks that have to be
fulfilled at the same time (e.g., movies that are assessed
regarding several criteria) and different kinds of information
sources (e.g., human experts and simulation systems).

The above challenges 1 to 6 will be discussed in more
detail in this article.

We envision dedicated collaborative interactive learning (D-
CIL) approaches where the above limitations no longer hold.
That is, we will develop future AL processes that are

e interactive in the sense that there is an information
flow not only from humans to the active learner but
also vice versa and not only in the form of labels but
in various, more complex ways,

o collaborative in the sense that various experts collab-
orate to support the active learner with information,
and

e dedicated in the sense that the learning process is
clearly defined (such as, e.g., in an industrial quality
monitoring process), the group of human experts is
rather small and the collaborate over a longer period
of time.

As an example for a D-CIL application, consider an
industrial quality monitoring problem we addressed some
years ago [1]: At a last stage of a silicon wafer fabrication
process the wafers have to be checked for possible defects
by means of visual inspection. Anomalies such as abrasions,
cracks, scratches, or dust particles must be identified in
images of wafers taken under different lightning conditions
in order to sort out unusable wafers. Conspicuous regions
on a wafer can rather easily be detected using appropriate
image processing techniques. The classification of these
regions, however, is rather difficult. Human experts often
fail, they disagree, or their assessment criteria vary over
time, depending on parameters such as fatigue, motivation,
experience, etc. that may not be known in detail. How
can such a classification process be automated using, e.g.,
features computed from the images such as the length-width
ratio describing a conspicuous region? It is cheap to obtain
a large amount of images of conspicuous regions, but time-
consuming and error-prone to get the corresponding labels.
The solution could be a D-CIL approach as sketched above.

The field of AL has awoken the interest of many com-
panies, such as Microsoft, IBM, Siemens, AT&T, Mitsubishi,
or Yahoo. Publications of those companies show that AL
can be successfully utilized to solve problems such as in
text classification [2], detecting and filtering abusive user-
generated content on the Web [3], sentiment analysis of
texts [4], speech recognition [5], [6], image classification [7],
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drug design [8], [9]], detection of plant diseases [10], malware
detection [11]], or recommender systems [12], [13].

Altogether, we can be sure that there will also be an
increasing interest in AL and, as many limitations of AL
are abolished, in D-CIL, too. We even believe that many
problems arising in the field of Big Data may be solved
relying on D-CIL approaches. D-CIL techniques may also
advance more technical fields such as the field of self-
organizing and adaptive systems by increasing their degree
of autonomy in learning tasks. D-CIL may even be seen
as a first step towards CIL in open-ended environments,
an approach we call opportunistic collaborative interactive
learning (O-CIL). There, many technical devices (e.g., open,
heterogeneous, dynamic systems such as mobile devices,
e.g., smartphones) will interact in the sense sketched above
by actively collecting information from other devices, from
humans, or from the Internet, for instance. Although we
focus on D-CIL in this article, we will briefly outline O-CIL
in Section Bl

In the remainder of this article, we first present some
foundations of AL in Section 2 and define D-CIL in Sec-
tion 3} In Section {4 we investigate the above challenges in
more detail and briefly discuss possible solutions. Finally,
Section 5| concludes the article by taking a look at possible
application fields and at O-CIL.

2 OVERVIEW OF ACTIVE LEARNING FOUNDATIONS

The motivation of AL is that obtaining plenty of unlabeled
data is often quite cheap, while acquiring labels is a task
with high costs (monetary or temporal). AL is based on the
hypothesis that a process of (iteratively) asking an oracle for
labels and refining the current model can be realized in a
way such that

o the performance of the resulting model is compara-
ble to the performance of a model trained on a fully
labeled data set and

o the overall labeling costs to obtain the final model
are much lower (typically simply measured by the
number of labels).

Actually, to address the previous requirements it is possible
to build an active learner that is based on a complementary
pair of model (e.g., a classifier) and selection strategy. With
a selection strategy, the active learner decides whether a
sample is informative and asks the oracle for labels. Here,
informative means that the active learner expects a (high)
performance gain if this sample is labeled (similarly, a set of
samples can also be called informative).

Basically, various kinds of models can be used for AL,
but the selection strategy should always be defined de-
pending on the model type (e.g., whether support vector
machines, neural networks, probabilistic classifiers, or deci-
sion trees are chosen to solve a classification problem). AL
can be used for classification problems (e.g., [14], [15], [16],
[17]), to modify the results of clustering (e.g., [18]), to solve
regression problems (e.g., [19], [20], [21]], [22]), or for feature
selection (e.g., [8], [9]).

In the field of active learning (AL), membership query
learning (MQL) [23]], stream-based active learning (SAL) [24],



and pool-based active learning (PAL) [25] are the most impor-
tant paradigms (see Figure[Th).

In an MQL scenario, the active learner may query labels
for any sample in the input space, including samples gen-
erated by the active learner itself. Lang and Baum [26], for
example, describe an MQL scenario with human oracles to
classify written digits. The queries generated by the active
learner turned out to be some mixtures of digits, therefore
being too difficult for a human to provide reliable answers.

An alternative to MQL is SAL, which assumes that
obtaining unlabeled samples generates low or no costs.
Therefore, a sample is drawn from the data source and the
active learner decides whether or not to request label infor-
mation. In SAL the source data is scanned sequentially and
a decision is made for each sample individually. Typically,
SAL selects only one sample in each learning cycle.

For many practical problems a large set of unlabeled
samples may be gathered inexpensively and this set is
available at the very beginning of the AL process. This
motivates the PAL scenario. The learning cycle of PAL is
depicted in Figure [Ip. Typically, PAL starts with a large
pool of unlabeled and a small set of labeled samples. On
the basis of the labeled samples the knowledge model (e.g.,
a classifier) is trained. Then, based on a selection strategy,
which considers the “knowledge” of the active learner, a
query set of unlabeled samples is determined and presented
to the oracle (e.g., a human domain expert), who provides
the label information. The set of labeled samples is updated
with the newly labeled samples and the learner updates
its knowledge. The learning cycle is repeated until a given
stopping condition is met.

In the remainder of this article we focus on PAL for
classification problems. This is only done to simplify the
discussion of the challenges. Basically, MQL and SAL suffer
from the same limitations and they will benefit from D-CIL.
Also, many of the solution ideas for classification problems
may be transferred to other kinds of problems such as
regression.

A selection strategy for PAL has to fulfill several tasks,
two of which shall be given as an example: At an early stage
of the AL process, samples have to be chosen in all regions
of the input space covered by data (exploration phase). At a
late stage of the AL process, a fine-tuning of the decision
boundary of the classifier has to be realized by choosing
samples close to the (current) decision boundary (exploita-
tion phase). Thus, “asking he right question” (i.e., choosing
samples for a query) is a multi-faceted problem and various
selection strategies have been proposed and investigated.
We want to emphasize that a successful selection strategy
has to consider structure in the (un-)labeled data.

Typically, very limiting assumptions (cf. Section [I) are
made concerning the oracle and the labeling costs (omni-
scient, omnipresent oracle that labels samples on a fixed cost
basis). Moreover, some other aspects of real-world problems
are often more or less neglected by current research:

e In real-world applications, AL has often to start
“from scratch”, i.e., with no labels at all. This requires
sophisticated selection strategies with different be-
haviors at different phases of the AL process.

o Parameters of the active learner (including parameter
of training algorithms for the classifier and the selec-

Membership Query Learning

Active Learner

generates a query

Stream-based Active Learning

Data sampling 7) Active Learner decides
Source of one sample to query or not

Pool-based Active Learning

o

"\, _sampling of a large
sampiing ol a ‘arge . N
pool of samples

Active Learner
selects the best query

(a) Main AL paradigms.

Active Learner

Strategy selects Labeled

Query Set, Query Set
(x1,7) (x1,31)
: Pool La;) gled :
fx,2) 6| ey
update
Knowledge :
N
Model n< A

(b) Learning cycle of standard PAL.

Fig. 1. Overview of main AL scenarios with focus on PAL.

tion strategy) cannot be found by trial-and-error. AL
only allows for “one shot”.

There are a number of articles that assess the state-of-
the-art in AL:

e A general introduction to AL, including a discussion
of AL scenarios and an overview of query strategies
is provided in [27].

e A detailed overview of relevant PAL techniques is
part of [14]. In addition to single-view /single-learner
methods, alternative approaches are outlined: multi-
view/single-learner, single-view /multi-learner, and
multi-view /multi-learner.

e For certain problem areas it makes sense to use
AL in combination with semi-supervised learning
(SSL). AL techniques that integrate SSL techniques
are presented in [15].

e Work that uses AL in combination with support vec-
tor machines (SVM) for solving classification prob-
lems is summarized in [28], [29].

3 CHARACTERIZATION OF DEDICATED COLLABO-
RATIVE INTERACTIVE LEARNING

In this section we describe our vision of future AL that we
call dedicated collaborative interactive learning (D-CIL).

To overcome the unrealistic limitations made by con-
ventional AL techniques (cf. Sections [I] and [2) we have to
integrate multiple “uncertain oracles” (e.g., human domain
experts) into the AL process (see Figure ). That is, these
oracles possibly make errors due to various causes, e.g., they
are differently experienced in coping with the learning task,



or their work quality depends on daily condition, moti-
vation, etc. Therefore, D-CIL explicitly models information
uncertainty, i.e. uncertainty regarding samples, labels, or
parametrization of models. This uncertainty is then taken
into account when either (1) the expertise of the human
domain experts has to be identified or (2) their knowledge
is required to provide labels.
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Fig. 2. Learning cycle of D-CIL with multiple collaborating uncertain
oracles (human experts, simulation systems, etc.).

In real-world applications D-CIL has to start “from
scratch”, e.g., without any label information. We assume
that, during the AL process more and more (uncertain)
labels become available, but no “ground truth”. Therefore,
the collaboration of various human experts will be essential
for the success of D-CIL. Experts not only collaborate with
the active learner. Other kinds of collaboration could be
the mutual support of two or more experts, according to
the idea of pair programming, in order to achieve higher
accuracies in solving the learning task. These collaboration
processes are indicated by the dotted, blue arrows in Fig-
ure[2l

D-CIL integrates multiple experts into the AL process
and models their expertise explicitly. Consequently, D-CIL
needs more sophisticated selection strategies than those
used in conventional AL. In D-CIL, the selection strategy has
not only to choose the most informative samples (from the
pool of unlabeled samples) considering the current knowl-
edge of the model (here, a classifier) in order to build a query
set in each AL cycle, but also to decide which experts shall
be queried depending on their expertise. That is, we have
an exploration/exploitation problem again. In addition, in
D-CIL we query not only samples but also knowledge at
higher abstraction levels (e.g. premises of rules), such that
more sophisticated cost schemes are needed, too.

Particularly, D-CIL differs from conventional AL in the
fact that D-CIL gives targeted feedback (cf. the dashed, red
arrows in Figure [2) which will improve the experts’ level
of expertise. To emphasize this difference, we use the term
interactive learning. Therefore, the main goal of D-CIL is to
maximize the accuracy of the actively trained classifier and
to maximize the benefit of the human domain experts with
minimal costs.

We assume that the humans who collaborate to solve a
learning task are actually have the knowledge about that
specific learning task (e.g., a certain industrial problem). We
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use the term “expert” to emphasize this fact. These experts
are assumed to be motivated to collaborate over a longer
time period, i.e., they are regarded as being dedicated to the
learning task. The learning task itself may be time-variant,
i.e., it may change its characteristics over time. An example
are new classes that have to be detected or classes that are
not relevant any more (resulting in novel or obsolete clusters
of samples in the input space of a classifier). So, we need
online learning techniques to solve such problems.

Altogether, D-CIL targets a specific class of applications
where we may assume that the following assumptions
hold: We have rather small, quite homogeneous groups of
experts that collaborate over a longer period of time to solve
a specific application problem. Though we act on these
assumptions for D-CIL, we will abandon them for O-CIL
which will be sketched in Section Bl

4 CHALLENGES FOR FUTURE D-CIL RESEARCH

In the field of D-CIL, we will answer many questions, most
of which caused by the harsh limitations of AL sketched
in Section [I} In the following, we examine the six key
challenges (see Section [I)).

4.1 Challenge 1: Uncertain Oracles

In a first step, we address the obvious fact that oracles
are not always right. In principal, labels are subject to
uncertainty. Here, the meaning of the term uncertainty is
adopted from [30]. That is, “uncertain” is a generic term to
address aspects such as “unlikely”, “doubtful”, “implausi-
ble”, “unreliable”, “imprecise”, “inconsistent”, or “vague”.

In real-world applications, labels may come from var-
ious sources, often but not always humans. Therefore,
a new problem arises: The labels are subject to un-
certainty for different reasons. For example, the perfor-
mance of human annotators depends on many factors:
e.g., expertise/experience, concentration/distraction, bore-
dom/disinterest, fatigue level, etc. Furthermore, some sam-
ples are difficult for both experts and machines to label (e.g.,
samples near the decision boundary of a classifier). Results
of real experiments or simulations may be influenced, too:
There may be stochasticity which is inherent to a certain
process, sensor noise, transmission errors, etc., just to men-
tion a few. Thus, we face many questions: How can we make
use of uncertain oracles (annotators that can be erroneous)?
How do we decide whether an already queried sample has
to be labeled again? How do we deal with noisy experts
whose quality varies over time (e.g., they gather experience
with the task, they get fatigued)? How does remuneration
influence the labeling quality of a noisy expert (e.g., if
they are payed better, they are more accurate)? How can
we decide whether the expert is erroneous or an observed
process itself is nondeterministic?

As a starting point, we may assume that the “expertise
of an expert” (i.e., the degree of uncertainty of an oracle)
is time-invariant and global in the sense that it does not
depend on certain classes, certain regions of the input space
of the model to be learned (e.g., a classifier), etc. Then, we
may ask experts for, e.g.,

o one class label with a degree of confidence,



o membership probabilities for each class (with or
without confidence labels),

o lower bounds for membership probabilities (cf. [31]]),

o a difficulty estimate for a data object that is labeled,
or

o relative difficulty estimates for two data objects
(“easier” or “more difficult” to label).

Then, we have to define appropriate ways to model that
uncertainty (e.g., second-order distributions over parame-
ters of class distributions in a probabilistic framework) and
to consider it in selection strategies (e.g., with additional
criteria) and for the training of a classifier (e.g., with gradual
labels).

4.2 Challenge 2: Multiple Uncertain Oracles

In a second step, we address situations where several, indi-
vidually uncertain oracles (e.g., several human experts with
different degree of expertise) contribute their knowledge.
Thus, the learning process will now rely on the collective
intelligence of a group of oracles. We see this step as a first
important step towards true collaboration between human
experts to support such a learning process.

In various applications, different, uncertain oracles may
contribute labels (cf. Figure [2). These experts may not only
have different degrees of expertise. They also may have
more or less expertise for different parts of the problem
that has to be solved, e.g., for different classes that have
to be recognized, for different regions of the input space,
for different dimensions of the input space (attributes), etc.
Also, experts collaborate with others, which stimulates a
learning from others and results in a knowledge gain for
the expert. Now, we face many new questions: What are
appropriate mechanisms to identify the expertise of the
human expert? Which are the criteria for identifying the
“optimal” human expert? Which experts should collaborate
with each other in a labeling process in order to constitute
a high-performance group? How can exploration (identify-
ing expertise) and exploitation phases (using the experts’
knowledge) be interwoven? How can we merge uncertain
information obtained from several experts? How can this
process be designed in order to be independent of time
and place (e.g., for experts are only available on a part time
basis)?

As a starting point, we may initially assume that the
“expertise of an expert” is known. We may use generative,
probabilistic models, for example, to describe the individual
knowledge of experts and the “global” knowledge of the
active learner (cf. [14], [15]). Uncertainty may again be cap-
tured with second-order approaches. New selection strate-
gies must then not only choose samples, but also oracles. If
the expertise of an expert is not known, it must be revealed
either by asking for difficulty or confidence estimates or by
comparing it to the knowledge of others (e.g., by asking
an expert who has to be assessed some questions with
already known answers). In order to explore solutions to
challenge 2, we may not only rely on real experiments with
humans (cf. the field of crowdsourcing, for instance). In
addition, we may also be confronted with the problem of
simulation: We have to simulate several uncertain oracles
with the different characteristics mentioned above.

4.3 Challenge 3: Alternative Query Types

If we have to explore the knowledge of oracles as sketched
above, the costs of AL increase substantially. In the other
hand, we might ask oracles such as human experts for more
abstract knowledge with the goal to reduce the number of
queries this way.

In many applications, active learners could ask for more
“valuable” knowledge. Examples are conclusions that a
human expert gives for a presented rule premise, or correla-
tions between different features or features and classes that
an expert provides in order to identify important or redun-
dant features. Questions that arise in this context are: Which
questions can be asked? How can we provide (i.e., visualize,
for instance) the required information to the expert? How
can we combine different kinds of expert statements, e.g.,
about samples, rules, relations between features, etc? How
can we use this information to initialize the models that are
trained or to restrict the model capabilities in an appropriate
way (e.g., if features are known not to be correlated?
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Fig. 3. Asking for conclusions of rule premises.

As a starting point, we could investigate the case of
annotating rule premises with conclusions. To stay in a
probabilistic framework we could obtain user-readable rule
premises by marginalization of density functions from a
generative process model. Figure [3| gives an example for
a density model consisting of three components in a three
dimensional input space. The first two dimensions z; and
2o are continuous and, thus, modeled by bivariate Gaus-
sians whose centers are described by larger crosses (+). The
ellipses are level curves (surfaces of constant density) with
shapes defined by the covariance matrices of the Gaussians.
Here, due to the diagonality of the covariance matrices these
ellipses are axes-oriented and their projection onto the axes
is also shown. The third dimension w3 is categorical with
categories A (red), B (green), and C (blue). The distributions
of the third dimension x3 are illustrated by the histograms
next to every component. Here, only categories with a
probability strictly greater than the average are considered
in rules in order to simplify the resulting rules. We assume
that the components modeling sets of circles (green) and



crosses (red) are already labeled, resulting in two rules for
these components:
if 1 is low and x5 is high and 23 is A or B
then class = red,
if 21 is high and x5 is high and x5 is C
then class = green.
Now, the active learner presents the following rule premise
and asks for a conclusion in form of a class assignment:
21 is high and x5 is low and 3 is B.
This information could then be used to (re-)train a classifier,
e.g., in a transductive learning step.

To investigate relations between features, i.e., between
input dimensions of a classifier, we may rely on statistical
measures, but also adopt ideas from the field of concept
exploration (cf. the field of attribute exploration in [32]).

4.4 Challenge 4: Complex Cost Schemes for Queries

In many real-world applications obtaining information may
be possible at different costs, e.g., some class information
is more expensive than other or the labeling costs depend
on the location of the sample in the input space. This
already applies to a “conventional” AL setting without the
many ideas discussed above. In a D-CIL setting, considering
complex cost schemes is even more important.
We must consider costs that depend on

1) samples with their classes: As mentioned above, la-
beling costs may depend on the class (e.g., some
kinds of error classes in an industrial production
process may be more difficult to detect than others)
or on the location of the sample in the input space
(e.g., samples close to the decision boundary require
higher temporal effort), for instance.

2) query types: It is obvious that different labeling costs
have to be foreseen for samples (with or without
certainty estimates) and for more complex queries
such as rule premises. The cost schemes have to be
even more detailed in a D-CIL setting with feedback
to the humans (e.g., with queries such as “Can you
confirm that ...?").

3) oracles (experts): The costs of humans may depend on
their expertise, their temporal effort, their availabil-
ity (e.g., working hour may be modeled with finite
costs, otherwise costs are infinite), etc.

In principle, all these costs may change over time, too. The
basic questions in this context are: How can a cost schema be
defined and which different types are existent? How should
compensation mechanisms for the differentiated expertise of
a human be designed? How can these compensation mech-
anisms be implemented? How must the selection strategies
of an active learner be adapted?

As a starting point, we suggest to choose the first point
from the list above and investigate solutions in a “classical”
AL setting. Then D-CIL requires solutions for the second
and third points, respectively. Mechanisms of crowdsourc-
ing will provide additional insights. On the one hand,
differentiated compensation mechanisms can be realized if
a task with defined costs can be outsourced to the crowd
[33]. On the other hand, the definition of the task requires
additional research in the field of crowdsourcing.

6

4.5 Challenge 5: True Collaboration of Human Experts
and Interaction with an Active Learner

In a next step we must pave the way for a true collaboration
of human experts in AL, which will essentially be based on
the capability of humans to learn and the ability of the active
learner to provide appropriate feedback to the humans to
enable them to learn themselves. Then, the new technique
actually deserves to be called D-CIL.

In many applications, experts would be interested in
getting feedback from an active learner, in improving their
own knowledge, and sharing their expertise with others. As
an important requirement, the active learner must be able
to give feedback to the humans and asking for comments
on such feedback. Some possible kinds of interactions of an
active learner with humans are (cf. also [34]):

The following rule appears to be very certain be-
cause ... !

The following rule is in conflict with your knowl-
edge because ... !

Other experts are much less uncertain concerning
the following rule than you are ... !

Can you confirm the following rule ... ?

Can you confirm that the following two features
are not correlated ... ?

Can you confirm that the following feature is very
important ... ?

Can you provide additional samples for the follow-
ing input regions of the classifier ... ?

Some of the many new questions arising with this challenge
are: How can we deal with time-invariant knowledge of
oracles? Which information should be provided and how
(e.g., with/without certainty estimates, restriction to “crisp”
rules or not)? How must we adapt the active learner and
the selection strategies? In particular, a compromise has to
be found between modeling capabilities on the one hand
and the abilities of humans to actually understand readable
rules on the other. How do human experts change their
behavior if they get feedback? How do human experts
cooperate when they use a D-CIL system? How can an
explicit “pooling” of experts in teams be realized? May
we suggest solutions to experts? How can we realize a
review mechanism for answers of experts? When and how
can human experts be recruited? How can we measure the
benefit of human experts or groups of experts?

As a starting point, we may stay within our proba-
bilistic framework, consider the individual knowledge of
humans (challenge 2) and present samples and rules (e.g.,
obtained by marginalization from density models to make
them human-readable as sketched above, challenge 3) with
fused statements (labels or conclusions) and certainty esti-
mates. Then, the time-variance of human knowledge must
be considered by extending the solutions from challenge 2.
Altogether, the collaboration activities between humans and
between humans and the active learner need to be designed
in a structured and re-usable way [35], [36]. Again, the eval-
uation of any new, proposed techniques will be a challenge
by itself.



4.6 Challenge 6: Online Learning for Time-Variant
Learning Tasks

Above, we have sketched D-CIL which takes place in a
time-variant environment in the sense that the knowledge
of experts improves over time. But, the observed and mod-
eled processes could be time-variant, too. That is, these
processes may change slightly (e.g., due to increased wear
of mechanical parts of an observed process), become ob-
solete, or new processes corresponding to known or to
new, previously unknown, classes may arise during the
application of the model. Then, a major challenge consists
in developing online D-CIL techniques that cope with such
effects. Altogether, we can say that in essence we have to
to solve a learning task which changes over time, where
we only have partial knowledge, and where knowledge is
uncertain. That is, from the viewpoint of the humans and
the active learner “lifelong” learning may be needed.

Questions that come up when we address this challenge
are, for example: How can changes in the characteristics of
the processes underlying the observed data be detected?
How can new classes be considered online? How can we
efficiently and effectively integrate the human experts in the
process of detection and modeling?

As a starting point, we may adapt techniques from the
fields of anomaly or novelty detection, obsoleteness detec-
tion, detection of concept drift or shift, or online clustering.
However, these techniques are typically intended to work
in a fully autonomous way, but we may again integrate
the knowledge of human experts, for instance, to improve
these techniques. Also, we may take a look at some existing
multiple learner / multiple expert approaches, and adopt
ideas from the field of SAL.

4.7 Further Challenges

Two additional challenges must be addressed as well:

Stopping Criterion: Currently, the stopping criterion in
real-world applications is based on economic factors, e.g.,
the learner queries samples as long as the budget allows.
The challenge consists in knowing when to stop querying
for labels. One possibility may be to determine the point
at which the cost of querying more labels is higher than
costs for misclassification. Another possibility is to deter-
mine when the learner is at least as good as the group of
annotators. For such a “self-stopping criterion”, the active
learner must be able to assess its own performance.

Performance Assessment: In AL, the performance of
an active learner must be assessed by means of several
criteria to capture effectiveness and efficiency of AL. For
this purpose, we may use a ranked performance measure, a
data utilization measure, the area under the learning curve,
and a class distribution measure (see, e.g., [14], [15]). D-
CIL requires additional measures, e.g., to assess the various
learning costs or to evaluate the learning progress of human
experts.

Apart from these challenges we still face the already dis-
cussed requirements such as “parameter-free” active learn-
ing techniques or self-adaptation of selection strategies to
different phases of the active learning process.

5 SUMMARY AND OUTLOOK

In this article, we have sketched our vision of D-CIL which
will be elaborated in more detail in the near future. In this
novel field, we would like to concentrate on developing
models that take information uncertainty into consideration,
identifying the annotators’ level of expertise, making use of
different levels of expertise and fusing possibly contradict-
ing knowledge, labeling abstract knowledge, and improving
the expertise of the experts. In the envisioned D-CIL sce-
narios, human domain experts should benefit from sharing
their knowledge in the group. They should receive feedback
which will improve their own level of expertise. We assume
that in a D-CIL scenario the number of humans involved
is rather low (e.g., they are specialists for certain industrial
problems), they are more or less motivated, and they con-
tribute their knowledge for a long term. In principal, many
applications may benefit from D-CIL, for example, product
quality control (e.g., deflectometry, classification of errors
on silicon wafers or mirrors, analysis of sewing or garments
in clothing industry), fault detection in technical and other
systems (e.g., analysis of fault memory entries in control
units of cars, analysis of different kinds of errors in cyber-
physical systems, etc.), planing of product development
processes (e.g., in drug design), or fraud detection and
surveillance (e.g., credit card fraud, detection of tax evasion,
intrusion detection, or video surveillance).

Internet as additional
knowledge source

devices that collaborate

humans that collaborate
and assist devices
in their collaboration

Fig. 4. Idea of Opportunistic CIL (O-CIL).

In our future world, technical systems have to evolve
over time. Not all knowledge about any situation the system
will face at run-time will be available at design-time. That
is, the system has to detect fundamental changes in its
environment and react accordingly. This requires that “nev-
erending” or “lifelong” learning mechanisms have to be im-
plemented into such systems. Amongst other mechanisms
(e.g., context- or self-awareness), these learning mechanisms
will include appropriate active learning techniques. These
future technical systems may be mobile devices, for exam-
ple, that actively collect data and other kinds of information
from other devices, humans (who are often non-experts
in a field), or the Internet (e.g., from social networks),
cf. Figure [l These active learning processes comprise large
(e.g., thousands), open (participants may leave or others



may enter), and heterogeneous (e.g., different types of de-
vices, kinds of knowledge, etc.) groups of “participants”.
The data that are labeled may include video, audio, text, or
image data for instance. Also new kinds of human-computer
interaction may come into play [37]. Each active learner
built into such a future system has to make best of the
available information, i.e., it has to act in an “opportunistic”
way (cf. [38]). This requires an extension of D-CIL to O-
CIL (opportunistic collaborative interactive learning), i.e., AL
in open-ended environments, and also new techniques to
model and analyze AL in such groups (cf., e.g. [39]).
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