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Abstract—Today, so-called “smart” or “intelligent” systems
heavily rely on machine learning techniques to adjust their
behavior by means of sample data (e.g., sensor observations).
But, it will be more and more complicated or even impossible
to provide those data at design-time of that system. As a
consequence, these systems have to learn at run-time. Moreover,
these systems will have to self-organize their learning processes.
They have to decide which information or knowledge source they
use at which time, depending on the quality of the information
or knowledge they collect, the availability of these sources, the
costs of gathering the information or knowledge, etc. With
this article, we propose opportunistic collaborative interactive
learning (O-CIL) as a new learning principle for future, even
“smarter” systems. O-CIL will enable a “lifelong” or “never-
ending” learning of such systems in open-ended (i.e., time-variant)
environments, based on active behavior and collaboration of
such systems. Not only these systems collaborate, also humans
collaborate either directly or indirectly by interacting with these
systems. The article characterizes O-CIL, summarizes related
work, sketches research challenges, and illustrates O-CIL with
some preliminary results.

I. INTRODUCTION

In our future world, technical systems have to evolve over
time because they have to function in situations unforeseen
at design time. That is, the system has to detect fundamental
changes in its environment and react accordingly. This requires
that “never-ending” or “lifelong” learning mechanisms have to
be implemented into such systems. Amongst other mechanisms
(e.g., context- or self-awareness), these learning mechanisms
will include appropriate active learning techniques. These
future technical systems may be mobile devices, for example,
that actively collect data and other kinds of information or
knowledge from other devices, humans (who are often non-
experts in a field), or the Internet (e.g., from social networks),
cf. Fig. 1. The learning processes comprise large (e.g., thou-
sands), open (participants may leave or others may enter),
and heterogeneous (e.g., different types of devices, kinds of
knowledge, etc.) groups of “participants” (i.e., smart systems).

www
Internet as additional
knowledge source

Smart systems (e.g., mobile
devices) that collaborate

Humans that collaborate
and assist smart systems

in their collaboration

Fig. 1: Idea of opportunistic collaborative interactive learning
(O-CIL), from [1].

The data that are labeled may include video, audio, text,
or image data. New kinds of human-computer interaction will
come into play. Each smart system has to make the best of
the available information or knowledge, i.e., it has to learn in
an “opportunistic” way. The active gathering of information
or knowledge can be seen as a first stage of cooperation of
two or more systems, that improve their knowledge to better
master their respective tasks. But, these smart systems also
offer new possibilities for true collaboration of smart systems
and/or humans. As an example, we may consider collaboration
processes of humans that are actively supported by collectives
of smart systems being aware of the humans’ needs and
knowledge. As these future smart systems learn “in the wild”,
we also need new techniques to model and analyze these novel
kinds of online learning processes and to guarantee certain
properties.



Developing systems as sketched above requires research in
a new field that we call opportunistic collaborative interactive
learning (O-CIL). O-CIL can be regarded as an extension of
active and collaborative learning for open-ended environments.

In the remainder of this article, we first characterize the
concept of O-CIL in more detail (Section II). Then, related
work will be summarized in Section III. In Section IV, we
introduce the key research challenges of O-CIL and briefly
discuss ways to find solutions for the corresponding problems.
Preliminary results of a case study that underlines the im-
portance of research in the field of O-CIL are presented in
Section V. Finally, Section VI concludes the article.

II. CHARACTERIZATION OF OPPORTUNISTIC
COLLABORATIVE INTERACTIVE LEARNING

In the early days of computerized technical systems, these
systems were specifically designed to master more or less
complex tasks. Then, at run-time, they were stuck to these
tasks and to the operational environments and situations that
were anticipated at design-time. Today, technical systems are
able to adapt to new situations, to learn from observations
or data they are provided with, and to optimize themselves.
For this reason, we call these systems “smart” or “intelligent”.
In the near future, we will see more and more applications
where technical systems that learn to optimize their behavior
by means of sample data cannot be provided with all the data
they need for learning (or training) at design-time. The reasons
for this are manifold, e.g.,

• the sheer amount of data that are necessary to learn
mastering a task is too large,

• the temporal effort needed for offline learning would be
too large,

• the financial costs to provide the data would simply be
too high, or

• the system will encounter new kinds of situations at run-
time that cannot be foreseen at design-time.

The latter includes new kinds of operational environments
where a “simple” re-parametrization would not be sufficient.
Instead, more sophisticated re-structuring mechanisms (e.g.,
choice of collaboration partners in distributed systems) or the
self-adaptation of algorithms that rule a system’s own behavior
are needed, for instance.

Thus, we need a new generation of smart systems with
lifelong (i.e., never-ending) learning capabilities to work in
uncertain, open-ended (e.g., time-variant) environments. But,
we have to go far beyond the current fields of online learn-
ing [2], autonomous learning [3], or organic computing [4].
The systems we need have to act highly autonomous in the
sense that

• they assess their own knowledge to decide when this
knowledge is not sufficient to cope with new kinds of
situations arising at run-time,

• they connect to new information or knowledge sources
(e.g., other smart systems) and know which kind of
information or knowledge they can obtain from which
source,

• they assess the quality of information or knowledge
sources and the quality, usefulness, topicality, etc. of
information and knowledge they gather,

• they exploit various learning mechanisms to increase
their own knowledge, e.g., unsupervised learning, semi-
supervised learning, transfer learning, reinforcement
learning, and, in particular, active learning.

Altogether, this new generation of smart systems will exhibit
various self-∗ properties (e.g., self- and context-awareness or
self-reflection [5]) and active learning [6] will play a key role
to build such systems. However, the active learning techniques
needed here are far beyond the currently available techniques
with their limitations regarding number and availability of
information sources (typically one that is omnipresent), quality
of information sources (typically omniscient), cost for queries
(mostly not considered), type of queries (typically only one:
labels for data objects), assessment of own knowledge (mostly
not regarded), etc. [1].

Above, the term “information source” was used to summa-
rize very different ways to gather the information or knowledge
needed for learning. Possible information sources that have to
be considered include

• other, similar smart systems that might have similar
or complementary tasks (e.g., wearables such as smart
watches or smartphones),

• the Internet with its various data bases (e.g., collections
of labeled images),

• simulation systems that may be exploited to provide
labeled data,

• the own sensors of a system that deliver measurements
that are analyzed to reason about the own behavior (e.g.,
in the case of reinforcement learning), and

• humans that could be asked different kinds of questions
(e.g., to label observations, to provide conclusions for rule
premises, or to confirm knowledge).

In addition, these systems will keep temporarily unneeded
but potentially useful information or knowledge in mind (i.e.,
their memory) which can be re-used in various ways, e.g.,
by semi-supervised or transfer learning processes. In different
situations, different information and knowledge sources will be
accessible or available. Moreover, information and knowledge
comes at a cost. While access to the Internet is quite cheap
(provided that Internet access is possible), asking humans can
be rather costly and should be restricted to rare, but important
situations. Altogether, our new generation of smart systems
have to combine various sources as well as various learning
mechanisms and decide upon an appropriate choice of sources
and learning mechanisms depending on current availability,
costs, quality, type of query, etc.

Now, we also have to characterize terms such as “in-
formation” and “knowledge” for our field of O-CIL more
precisely. Here, we adopt the meaning of these terms from
the field of data mining [7], [8]. Data mining can be seen
as a multi-step process as shown in the data mining pyramid
(see Fig. 2, [9]). The idea of this pyramid can briefly be
summarized as follows: Raw data are pre-processed to con-
dense application-specific information in attributes or features.
Then, knowledge is extracted, e.g., by building classification or
regression models based on rules. By analyzing this knowledge
off-line it is possible to come to a deeper understanding of
its working principles, e.g., by (depending on the knowledge
model) analyzing how far premises of contradictory rules



“overlap” or by determining the fraction of the input space
which is “covered‘” by a certain rule. In a given application,
it is possible to gain experience in using the knowledge, e.g.,
by determining how often a rule is applied or by stating how
often it is applied successfully. Understanding and experience
will both support the efficient and effective application of the
knowledge. Our new generation of smart systems will address
these levels as follows, for example:

• The system itself may collect sensor observations and
extract relevant attribute values (data and information).

• The operational behavior of the system may be based on
classifiers containing rule systems (knowledge).

• Humans can be asked to provide labels for attribute
vectors or conclusions for autonomously generated rule
premises (information and knowledge).

• Assessing own knowledge before and in action may
lead to self-awareness of smart systems regarding the
usefulness of knowledge and knowledge deficiencies (un-
derstanding and experience).

As understanding and experience can be seen as a kind of
meta-knowledge, we will again use the term knowledge in
the following when we refer to the levels above data and
information.

data

information

knowledge

understanding

experience

Fig. 2: The data mining pyramid (adopted from [9]).

Our smart systems always have to consider that data, in-
formation, and knowledge are uncertain. Here, the meaning of
the term uncertainty is adopted from [10]. There, “uncertain” is
used as a generic term to address aspects such as “unlikely”,
“doubtful”, “implausible”, “unreliable”, “imprecise”, “incon-
sistent”, or “vague”.

The active gathering of information and knowledge can be
seen as a first stage of cooperation of two or more systems
that improve their knowledge to better master their respective
tasks. This effect has a direct impact on the usefulness of
such systems for humans. That is, humans profit from smarter
devices. However, these smart systems offer new chances to
develop truly collaborating smart systems and/or humans:

• Humans may profit from the “collective intelligence”
of others (including any combination of other humans,
systems, the Internet, etc.).

• Collaboration processes of humans may be actively sup-
ported by systems being aware of their respective needs
and knowledge.

• Collective systems may solve complex problems that they
cannot solve on their own.

These possibilities, however, require appropriate human-
machine interfaces in order to exploit humans as an important

and very particular source of information and knowledge and
to (pro-)actively provide them with all the information and
knowledge they might need (cf. [11]).

“Livelong” (referring here to the lifetime of the technical
system) learning is required in open-ended environments, i.e.,
environments where

• the collective of participating entities (systems, humans,
etc.) might be very heterogeneous,

• the number of entities might be large and open in the
sense that new entities may enter the collective while
others leave,

• the environment in which the entities work might be time-
variant, i.e., it changes its properties over time, or

• the entities within the collective may have various tasks
that might change over time.

To ensure that our new smart systems do “more good than
harm”, we also have to develop new techniques (cf. [12])
to analyze such systems, to detect emergent behavior, and
to control their behavior in a way that guarantees certain
properties that have yet to be defined (cf. the three laws of
robotics [13]).

Altogether, we envision a new generation of smart systems
based on novel techniques that we call opportunistic collab-
orative interactive learning (O-CIL) techniques. Learning in
such O-CIL based smart systems is

• opportunistic in the sense that these smart systems use all
kinds of information and knowledge, even if these sources
are sporadically available or uncertain (cf. [14]),

• collaborative in the sense that various humans (experts
or non-experts, depending on the application) and/or
smart systems collaborate to solve certain problems (e.g.,
problems that they cannot solve by their own), and

• interactive in the sense that there is an information and
knowledge flow not only from humans to the smart
systems but also vice versa in various, more or less
complex ways.

Closely related to O-CIL is dedicated collaborative interactive
learning (D-CIL), where the learning process is clearly defined
(such as, e.g., in an industrial quality monitoring process), the
group of human experts is rather small and they collaborate
over a longer period of time (see [1] for details). Research
in the field of D-CIL can be seen as a substantial basis
for research in O-CIL, but additional challenges need to be
overcome (cf. [1]).

Having now abstractly characterized systems with O-CIL
capabilities, we now want to briefly sketch some envisioned
application scenarios. Of course, not every example will in-
clude all the features mentioned above.

1) In the field of cyber-physical systems, connected machine
tools learn to cope with new situations arising from
sudden events (e.g., tool fracture) or gradual effects (e.g.,
wear of bearings) by learning from each other, asking an
operator, or accessing knowledge in data bases.

2) In the area of ubiquitous computing, wearables such as
smart watches or smartphones learn to identify the indi-
vidual activity patterns of users by asking other mobile



devices for similar patterns that are already labeled or by
sporadically querying a human user.

3) In the field of autonomous robots, robots explore their
environment by dynamically combining reinforcement
learning techniques with active learning techniques where
Internet data bases are asked for labeled images that are
similar to the currently observed environment.

4) In the field of autonomous driving, vehicles will gather the
information they need from other vehicles, infrastructure
(e.g., cameras at crossroads), or the Internet (e.g., highly
topical map information). They will cooperate with other
vehicles for maneuver and trajectory planning while con-
tinuously learning and improving their own behavior.

5) Information security is another area where O-CIL mecha-
nisms will come into play. Distributed intrusion detection
systems will encounter threats that they cope with by
collaboration. They will actively collect information about
new threats and the current situation, also in cooperation
with humans.

6) In the field of collaboration engineering, technical sys-
tems learn to compose high performing groups of human
experts with similar or complementary knowledge. For
solving a highly complex task, machines allocate the task
to an appropriate group of human experts and support
them in their collaborative activities.

The many challenges of O-CIL in smart systems seem to sum
up to an overall intractable problem. However, we will address
these challenges step by step and sketch specific challenges in
Section IV.

A representative O-CIL application example, where some
preliminary results are already available, will be outlined in
some more detail in Section V.

III. RELATED WORK

The DFG priority program Autonomous Learning [15] can
be seen as related to the field of O-CIL, as this program
aims to enhance the autonomy of modern learning systems in
the sense that the systems independently collect data, choose
their learning parameters and representations, and interact with
their environment by themselves. For this purpose, autonomous
learning combines machine learning techniques from fields
such as reinforcement learning, unsupervised learning, semi-
supervised learning, active learning, and deep learning, for
instance. However, the projects of the priority program that
use active learning techniques are geared to a very specific
application area such as robotics: For example, in [16], an
active learning approach is presented that allows a robot to
learn dependencies, e.g., the robot can only open a drawer if
the key unlocked it before. The approach presented in [17]
aims to reduce human-robot interaction by using active learn-
ing to teach a robot symbols which abstract from geometric
properties of real objects. Another approach described in [18]
applies active learning based on streams of 3D point cloud data
to train a robot classifying objects. With D-CIL and particular
with O-CIL we want to take the next step towards autonomous
systems that learn in a collaborative, massively distributed and
lifelong manner. For this, we abolish the unrealistic restrictions
of active learning and regard learning as a massively distributed
(multiple devices, different information and knowledge sources
of different and variable quality, etc.) and never-ending task.

The DFG priority program Organic Computing [19] and
similar research areas such as Autonomic Computing [20]
claimed that the design of open and complex systems requires a
paradigm shift in engineering. Each entity of the system needs
to be flexible and empowered by major degrees of freedom,
because a designer is not able to anticipate all possible config-
urations at design-time. Only then, the (overall) system is en-
abled to adapt itself to changing environment conditions at run-
time. Organic computing investigates means to develop nature-
inspired so-called self-∗ techniques (e.g., self-adaptation, self-
configuration, self-organization, self-optimization, etc.) for fu-
ture smart systems. Thus, machine learning plays an important
role. Research addressed, for instance, the problem of self-
adaptation of systems in noisy, dynamic environments based
on Learning Classifier Systems [21]. Evolutionary techniques
were used for optimization of a time-variant fitness function.
The problem of self-optimization in dynamic and noisy envi-
ronments (e.g., due to disturbances and anomalies) was also
addressed in [22]. There, various challenges (stability-plasticity
trade-off, exploration-exploitation problem, stability and safety
constraints, etc). were tackled in a holistic way using neuro-
fuzzy techniques. To increase the degree of autonomy in dis-
tributed systems novelty and obsoleteness detection techniques
for probabilistic classifiers and techniques for collaborative
learning in distributed systems based on an exchange of
rules contained in such classifiers were proposed [23], [24].
Another approach to increase the autonomy of smart systems
is imitation learning. An approach presented in [25] aims at
increasing the learning speed in multi-robot societies. Though
organic computing is a valuable basis for O-CIL, there are
many fundamental research challenges left.

The EU Future and Emerging Technologies (FET) proac-
tive initiative Fundamentals of Collective Adaptive Systems
(FoCAS) addresses operating, design, and evolution princi-
ples for systems that combine many heterogeneous entities
each with its own objectives and policies into ensembles
dynamically cooperating over different temporal and spatial
scales. A strong focus of the research is on understanding the
consequences of mixing humans and computers within flexibly
evolving ensembles that replace centralized control with dis-
tributed consensus and emphasizes incremental, collaborative
diffusion of knowledge over classical learning and data gath-
ering techniques. Key questions are conflict resolution, long
term stability, dealing with noisy and outdated information,
and handling open ended system configurations. In particular,
concepts related to incremental diffusion of knowledge in an
environment that lacks central control are highly relevant to the
vision of O-CIL. In fact, some of the initial ideas and results
build on work done by the authors within FoCAS projects [26],
[27]. However, within the FoCAS initiative little attention has
been given to fundamental questions of learning, in particular
active learning, which are at the core of the novel O-CIL
concept.

IV. RESEARCH CHALLENGES

In this section, we will discuss the key research challenges
of O-CIL. Firstly, we address the field of active learning,
where, amongst others, an overview of appropriate knowledge
models and strategies to deal with data of various quality is
given (Section IV-A). The challenges arising from dealing with
systems that exchange information with concerns related to



large scale interactions are addressed in the field of collective
adaptive systems (Section IV-B). Thereafter, we focus on the
research fields of collaboration engineering and crowdsourcing
which provide appropriate mechanisms for designing processes
that support interactions between humans and/or smart systems
(Section IV-C). In an O-CIL setting, the systems are allowed
to ask humans for the importance of attributes of a given
application problem. Thus, some research questions related to
knowledge acquisition are presented in Section IV-D. In order
to provide information and knowledge humans have to interact
with the learning system, which leads to research issues in
the field of human-computer interfaces (Section IV-E). Finally,
the field of complex system analysis addresses the problem of
analyzing emergent effects in collaboratively learning systems
and to control the behavior of the overall system to guarantee
certain properties (Section IV-F).

A. Challenges in the Field of Active Learning

D-CIL and in particular O-CIL require new kinds of active
learning (AL) techniques. AL mechanisms include, e.g., in the
case of pool-based active learning (PAL) [1]:

• a knowledge model that is actively built to solve a
regression or classification problem, for instance,

• a learning algorithm, e.g., sequential minimal optimiza-
tion for a support vector machine (SVM),

• pools of unlabeled and labeled sample data, with decreas-
ing and increasing size, respectively, and

• a selection strategy that decides for which unlabeled
samples an oracle (e.g., a human expert) is asked for a
label.

Successful AL techniques (e.g., for classification problems)
combine generative and discriminative knowledge modeling
approaches [28]. Generative knowledge models (e.g., proba-
bilistic models) allow for mechanisms that state knowledge
deficits or check for novel or obsolete knowledge, for instance.
Discriminative knowledge models such as models based on
statistical learning theory (e.g., SVM) focus on solving the
classification problem at hand with high accuracy. Selection
strategies use information about structure in data taken from
generative models to efficiently and effectively solve the
classification problem with discriminative models: In an early
phase of the AL process, all regions of the input space of the
classifier covered with sample data are assigned to classes,
while a fine-tuning of the decision boundary is done in a
late phase. Regarding the information about structure in data
(which can be obtained from unlabeled data) this can be seen as
a typical exploration vs. exploitation problem. For an overview
of the state-of-the-art in AL see [6], [29], [30], [31], [32], for
instance.

Research on O-CIL has to go far beyond the current AL
approaches with their limitations (see Section II). Research on
D-CIL will be a valuable first step (for research challenges in
the field of D-CIL see [1]). At first, we need new kinds of
knowledge models and techniques to build these knowledge
models as we have different kinds of information and knowl-
edge sources (oracles) with different quality (e.g., expertise).
We have to explore the knowledge of different sources and
to exploit their knowledge at the same time. We also have to
consider the fact that in technical applications, data typically

are uncertain. At second, we need new selection strategies as
these strategies have to choose not only samples for queries,
but also select an appropriate (and available) information and
knowledge source and consider the costs coming with that
source. Also, other kinds of queries must become possible,
e.g., to provide conclusions for rule premises or to confirm
or discard knowledge. Moreover, these knowledge modeling
techniques and selection strategies have to cope with time-
variant environments and possibly changing tasks in open-
ended environments which requires new combinations of PAL
and stream-based AL (SAL) techniques. We can say that O-
CIL has roots in organic computing, too, as the new generation
of smart collaborating systems have to self-organize their own
(active) learning process.

The field of ensemble learning [33], [34], where several
learning algorithms and/or models are combined to increase
the performance, e.g., of a classifier or a regression model, is
also related to O-CIL.

B. Challenges in the Field of Collective Adaptive Systems

As already pointed out, O-CIL is heavily influenced by
organic computing. Thus, it combines the general active learn-
ing related challenges with concerns related to large scale
interaction effects and emergent behavior. In previous work
we have already shown that systems, in which learning takes
place incrementally through information exchange based on
“meeting” patterns between smart systems, phase transition
effects can be observed [26]. The general idea is that two sys-
tems, who have exchanged knowledge to improve the quality
of their local classifiers, are able to improve the knowledge
of other systems they interact with even further, effectively
creating an overall feedback-loop-driven non-linear dynamic
system. In general, such feedback loops can be positive,
ineffectual, or negative (if disinformation is spread) and need
to be carefully controlled. Of particular interest are systems
where the information exchange patterns depend on human
behavior which is in turn dependent on the information that the
system provides. This is, for example, the case in collaborative
indoor location systems [35].

C. Challenges in the Fields of Collaboration Engineering and
Crowdsourcing

D-CIL and O-CIL require an interaction between humans
and smart systems. The research fields of collaboration en-
gineering and crowdsourcing provide appropriate mechanisms
for systematically designing processes supporting such interac-
tions. Collaboration engineering is an approach for designing
collaborative processes for solving highly complex recurring
tasks and conducting them without the ongoing help of a
human moderator. The process design leads human experts
through several structured activities and supports them in their
collaboration with each other for solving a task [36], [37], [38].
With respect to an unknown number of humans and tasks,
crowdsourcing research provides additional insights. In that
context, a task is outsourced to an undefined, generally large
group of people in the form of an open call [39]. In general,
crowdsourcing is characterized by three roles: crowdsourcer
(e.g., human expert who defines a task), crowdsourcing-
platform (e.g., system which offers human workers the tasks),
crowdsourcees (e.g., human workers who solve the task and



receive compensation) [39]. To bring the roles together, crowd-
sourcing comprises five consecutive phases (cf. [39]):

• Phase 1 – Task specification: Definition of task gran-
ularity and a clear task description with expectations
regarding the solution.

• Phase 2 – Selection of appropriate crowdsourcees: Deci-
sion for one of two selection mechanisms, either an open
call (all crowdsourcees have the chance to participate) or
a selection of appropriate crowdsourcees (analyzing the
skills of potential crowdsourcees).

• Phase 3 – Execution of the task: Decision for one of three
mechanisms for solving the task: crowdvoting (crowd-
sourcee makes a vote), crowdfunding (crowdsourcee
makes an investment), or crowdcreation (crowdsourcee
develops a complex concept).

• Phase 4 – Aggregation and selection of solutions: Deci-
sion for one of two selection mechanisms: consolidating
the several solutions (integrative) or selecting the most
appropriate solution (selective).

• Phase 5 – Compensation: Depending on the decision
of phase 4, all crowdsourcees who submitted a solution
(integrative) or only the crowdsourcee whose solution was
selected (selective) receive compensation.

Transferring the ideas and principles from collaboration
engineering and crowdsourcing to D-CIL and O-CIL provides
several new questions. First, we need to identify situations,
in which smart systems take over the role of a human crowd-
sourcer. It is important to analyze the types of tasks which exist
in the context of D-CIL and O-CIL. This leads to questions
addressing requirements for defining and structuring a task in
order to allow further automated processing by smart systems.
Furthermore, it is important to develop appropriate frameworks
for describing situations in which smart systems become able
to define and to structure a task for further processing. Second,
we need to identify the challenges for enhancing a smart-
system-driven collaboration between the crowdsourcer and the
crowdsourcees as well as among the crowdsourcees. In that
context, it is necessary to identify the appropriate granularity
of a task and its expected solution. Based on these insights,
we need to develop mechanisms which help smart systems to
distribute the task to the crowdsourcees. In addition, we need
new mechanisms which support smart systems in allocating
the task to crowdsourcees (e.g., human experts or intelligent
systems), who have the required knowledge to solve the task.
This also comes along with questions focusing on mechanisms
for composing a group of humans who should solve the task.
In that context, collaborative work practices among crowd-
sourcees (e.g., a group of human experts, intelligent systems,
or hybrid forms) need to be designed in order to ensure an
optimal solution.

D. Challenges in the Field of Knowledge Acquisition

Within the AI community, there are different perspectives
on the area of (collaborative) interactive learning. While
the understanding from a machine learning perspective is
to allow machine learning algorithms to ask a human once
in a while, whenever they require some specific additional
training data, knowledge acquisition uses the opportunity to
alleviate a human in the—predominantly manual—knowledge
acquisition task whenever possible by automatizing answers as

much as possible. A specific knowledge acquisition technique
is attribute exploration [40]. Its combination with machine
learning has been studied successfully, because of its formal
mathematical foundation.

For a given domain of interest, attribute exploration is
generating implications for a given set of attributes. For each
generated implication, the algorithm is asking the expert if
the implication holds for all objects of the domain of interest
or not. The expert either accepts the implication or has to
provide a counter-example. For instance, if we are interested
in the countries of the world, the expert might be asked
whether “OECD member” → “safe state of origin” holds or
not. She/He has either to accept the implication or she/he has
to provide a counter-example. The algorithm guarantees that
the number of accepted implications is always minimal. Some
of the questions may be answered automatically by relying on
existing background knowledge [41], [42], or by revoking a
reasoning mechanism [43]. The task of identifying counter-
examples can be alleviated by extending attribute exploration
with web search [44].

Answering the questions of the algorithm is a tedious task.
We are therefore looking for solutions that distribute this task
to several persons. In a dedicated setting (D-CIL), one could
eventually modify the algorithm such that it generates an alert
when answers of different members of an expert group become
inconsistent. In that case, one might expect that the experts
negotiate (eventually supported by the system) a common
understanding of the problem. In an opportunistic setting (O-
CIL)—e. g., when the answers are crowdsourced—one has
to encounter answers of varying quality. This brings up the
following research questions (cf. also Section IV-A):

1) Which expert should be asked? Who is most likely to
provide an answer at all, a correct answer, and/or the best
counter-example?

2) Should one ask more than one expert for each question?
3) How to deal with inconsistent answers? Should they all be

stored and made explicit when presented to the user? How
do they influence the knowledge acquisition procedure?
Or can the inconsistency be resolved in a negotiation
process of the experts, supported by the exploration
procedure?

4) How can the procedure handle the correction of a previ-
ously given answer?

5) Can one extend the procedure such that the learned model
is close enough to the true (unknown) model within a
certain probability?

E. Challenges in the Field of Human-Computer Interfaces

The degree to which humans are able and willing to provide
meaningful input is central to the performance of an O-CIL
system. Largely, both the ability and the willingness depends
on an appropriate interaction paradigm. The three main issues
to be considered are (1) interruptibility, (2) an appropriate input
modality adapted to the context situation, and (3) a model of
the learning process allowing the user to easily understand the
impact of the information she/he provides.

Detecting when and how it is appropriate to interrupt the
users asking for input is a well known open problem in mobile
and wearable computing [45], [46]. In general, there are few



situations in which asking the user for input is categorically
out of question. Instead, each request is associated with a cost,
which in turn relates to the level of response that the user is
likely to provide. Models of such cost involve user preferences,
her/his activity, the specific situation, the social setting, the
importance of the cause (why the input is asked) to the user,
and the effort involved in answering the request. Various
approaches have been investigated towards building such cost
models. Much early work [47] focused on statistical learning,
which however, has the disadvantage of requiring labeled
data. Other approaches combine appropriate user models with
context recognition or use response rate/quality as “labels”.
Within O-CIL systems, the evolution of such cost models will
also be done in a collaborative manner, raising questions of
transferability of users’ models, embedding the cost model
learning into social interactions, and the relationship between
the learning of the user models and the main learning task.

Clearly, the cost of requests can be reduced if they can be
achieved in a minimally disruptive way. A major problem of
labeling data for real world activity recognition stems from the
complexity of the required input. In general, it is not binary but
may include the introduction of new classes or explanation of
complex activity or context hierarchies. How to map such onto
simple modalities such as, for example, the micro interactions
of Google Glass [48] is an open question. Again, for O-CIL
the question of collaboration in different settings needs to be
taken into account.

A final challenge is how to communicate the importance
and effect of different types of input to the user (cf. also
Sections IV-A and IV-D). Optimally, the user should be
given an understanding of how her/his cooperation in different
situations impacts the future performance of the system (which
in turn impacts the quality of service that the system will be
providing to her/him in the future). This does not necessarily
imply that a user must be given an in-depth understanding of
the actually workings of the system. Instead a simple, intuitive
mental model is required. Such models are also important to
go beyond the mere acquisition of individual labels towards
more elaborate involvement of users in the improvement of a
classifier (e.g., suggesting where to collect data next, which
sensors to use, etc).

F. Challenges in the Field of Complex Systems Analysis

Collaboration between humans is based on a relationship
such as friendship or trust in each others’ work, which can
be represented and analyzed as a complex network [49]. A
collaboration network can either be initiated by a common
project, such as Wikipedia or projects on github, or an existing
network can decide to collaborate to produce something.
In both cases, very distinct network structures emerge that
influence the efficiency of communication and productivity. A
central question is now how smart devices can engage humans
in a collaboration with a beneficial network structure or—in
case that the collaboration is based on an already existing
network structure—how to support the communication on this
underlying network such that it is most efficient. One example
for an inefficient but common network structure is the so-called
small-world network structure that consists of a mainly local
grid structure plus some long-range connections [50]. Here,
collaboration in a repeated Prisoner’s dilemma is less likely

to be achieved [51]. To achieve an efficient communication
on such a network structure, long-range edges need to be
identified by the system and communication over them discour-
aged. Similarly, another common network structure contains a
scale-free degree distribution; in comparison to a Poissonian
distributed degree distribution, it decreases the robustness
in case of attacks against high-degree nodes and enhances
its robustness against random attacks [52]. Supporting new
connections within the collaboration network that drive the
network towards a Poissonian or scale-free degree distribution
can thus influence the robustness of the network under different
types of failure, noise, or attacks [53]. But here the question is
how the smart systems can learn which persons would actually
connect with each other since humans build their networks not
only based on competencies but also on psychological prop-
erties which need to be regarded [54]. In summary, existing
network structures between collaborating persons have to be
known and analyzed in order to support an efficient network
structure for communication and collaboration. This has to be
done reliably and in real-time in a dynamic and noisy sensoric
environment while the systems learn psychological, time- and
environment dependent parameters that may be deeply human
such as the propensity that two persons will work with each
other dependent on their gender, race, culture, and education,
to name just a few of the possibly determining parameters.

V. CASE STUDY

Some of the concepts underlying D-CIL or O-CIL have
already been explored in practice, in a cooperative travel time
estimation application. Based on an urban mobility simulation
built on data extracted from the real world city of Trento,
Italy, we explored both strategies for modeling and retaining
a distributed store of knowledge as well as resulting system
behaviors when different learning and exchange strategies were
applied. In this section, we will first give a short description
of the simulator used. Then, we will present an outline of the
knowledge and exchange model. Finally, we will show some
preliminary results we obtained.

The simulator we used for this case study was built upon
the Netlogo multi-agent simulation toolkit [55]. Netlogo forms
the component driving the actual simulation (i.e., progressing
time for the agents) and provides a convenient basis for
handling user interface based input and output of data. On
top of that, we designed a library encapsulating all the actual
real world information. This includes data acquired from the
municipality of Trento, such as traffic patterns, utilization
of parking spaces across the city, bus routes, and various
regions of interest (or different behavior) such as industrial
or commercial zones. It also includes a wealth of additional
data acquired by questionnaires filled out by residents of
the Trento area. Finally, the simulation uses some external
services, among them a multi-modal journey planner available
through the city, capable of providing whole itineraries for
reaching a destination specified by a user. By generating an
agent set based roughly upon the demographic properties of the
larger Trento area and supplying some basic behavioral rules
(such as workers going to work in the morning from residential
to industrial zones), a reasonably realistic simulation of urban
traffic could be constructed. It should be noted that the aim
was not to create a model of Trento itself, but rather to provide
a real-world inspired test environment for our concepts (for a



more comprehensive explanation, see [56]). The underlying
task model that describes what each agent is actually doing
to achieve its goals is also very flexible. From a modeling
perspective, the starting point is an abstract goal that is
consecutively refined down to concrete atomic actions, which
are then executed in sequence. An example: An agent may
start with a goal of going from A to B. This may be refined
to: “walk from A to A1”, “take the bus from A1 to B1”, “walk
to B”. The middle leg is then refined again to “stay on bus from
A1 to A2, A2 to A3, A3 to B1”. We believe that this technique
is a reasonable starting point for the challenges presented in
Section IV-C.

Fig. 3: Example of a graph based knowledge model for the
case study.

The knowledge model, which each of the 40.000 agents
representing one person or smartphone applied, was based
on a graph representation. As can be seen in Fig. 3, there
were different types of nodes: D and W represent context
factors (time of day and weather, respectively), while S1 to
S6 represent nodes derived directly from the street graph
underlying the simulation. S2 and S4 connected by dotted lines
represent temporal aspects, e.g., the load on a street segment
one temporal unit (e.g., 15 minutes) earlier. Edges represent a
significant dependence of a node on the state of a connected
other one. In general, for the urban mobility scenario, the
model consisted of three kinds of vertices: context (usually
connected to most other nodes), nodes derived from the
underlying traffic simulation (street segments, bus stops), with
connections mostly implied by spatial proximity, and temporal
nodes modeling the influence of previous states. Learning was
accomplished by adding information about the state of visited
nodes collected during actual journeys performed within the
system. There are similarities here to conditional random
fields and, via that, to Hidden Markov Models and Bayesian
Networks. Thus, this kind of model can be tuned towards
both generative as well as discriminative refinements or even
a combination of both. As mentioned in Section IV-A, this is
an important consideration for O-CIL.

Knowledge exchange was based upon a shared underlying
knowledge about the structure of the model itself. Even though
each individual agent might not have any knowledge about a
specific node, the node itself can readily be identified (e.g.,
as context node “weather” or street segment S1). Thus, when

agents exchange or fuse knowledge (e.g., based on physical
proximity or some other notion of closeness), many different
cases can be considered, for example:

• nodes known by both and connected by edges in both
models (here, the new nodes and/or edges are given by a
weighted fusion) or

• nodes and edges only known by one agent (here, the in-
formation can be incorporated into the less knowledgeable
model).

It should be noted that the exchange paradigms used in the
model are still very preliminary. They do, however, already
hint at the interesting aspects presented in Section IV-F. The
actual knowledge exchange can be tuned to conform to various
requirements. In the simplest case, agents share their entire
graph. In more complex scenarios, this may be reduced to a
subset (e.g., for privacy or efficiency reasons) or even just the
answers to specific queries (e.g., agent A asking agent B “Can
you tell me how to get from A to B via bus?”). The advantages
and disadvantages of each possibility are also inherently linked
to the challenges presented in Section IV-D. When agents are
presented with multiple choices (e.g., “take the car”, “walk”,
“take the bus”), decisions are made based on an utility metric
that takes into account different factors such as travel time
and cost. While the system itself—without any accumulated
knowledge—can give rough estimates, it specifically cannot
take into consideration events such as morning or evening rush
hours. Thus, as one performance metric, we looked at how the
quality of the travel time estimate changes based on different
scenarios: In three runs of six simulated days, agents either did
not learn at all, only learned locally, or shared their knowledge
globally. As can be seen in Fig. 4, the system without any
knowledge retention actually underestimated travel time every
day (since it could not incorporate any historic knowledge).
The local learning converged towards a reasonable estimate,
while the global knowledge repository actually showed a slight
fluctuation around a mean error of zero.
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Fig. 4: Travel time estimate error for different learning
paradigms (six days, 3 paradigms).

In a second series of experiments, where we simulated
two days, a fourth scenario was added: Agents again shared
their knowledge, but only on a regional (instead of a global)
basis. Fig. 5 shows that the regional model tends to behave
similar to the global one, but is a bit more prone to fluctuation.
Referring back to the challenges stated in Section IV-B, this



basic simulation setup can already be used to highlight a
few interesting questions. For example, given enough penalty
for tardiness, will there be a phase transition to a transport
ecosystem dominated by public options? Or maybe a fluc-
tuating system where traffic jams cause people to switch to
buses, but overfilled buses drive people back to (at that time)
less congested roads? Also, this scenario is ideally suited to
study information propagation, especially when considering
misinformation (that can easily be purposefully injected).
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Fig. 5: Travel time estimate error for different learning
paradigms (two days, 4 paradigms).

Overall, even though these results are preliminary, they
are already interesting: In the interaction case (where agents
actually share knowledge with each other), there is an oscil-
lating effect not seen in the strictly local learning. Also, the
effect seems to be higher with regional interaction vs. global
knowledge exchange. This provides a solid foundation for a
lot of future research possibilities: More comprehensive sim-
ulations are necessary, better strategies have to be developed
(especially opportunistic ones), new performance indices must
be defined, the approach has to be formalized, etc. However,
these preliminary results already show that O-CIL will provide
important contributions for future smart systems engineering.

VI. SUMMARY

A key limitation of systems that aim to learn to make
sense out of real-life unconstrained situations is the need for
extremely large amounts of training data. This amount of data
reflects the diversity and complexity of the real world. Our
long term vision for solving this problem is motivated by
the observation that increasingly nearly every human being
on the planet is equipped with devices that can continuously
collect sensor data. Even if each person provides only very
limited number of labels, over time enough labeled data to
cover high degree of complexity and diversity can be collected.
However, for many reasons (privacy, resources, communica-
tion) just globally collecting data from every human being
on the planet for a centralized global training data repository
is neither feasible nor desirable. Instead, we propose O-CIL,
a novel learning paradigm that leverages social interactions
and structures to incrementally accumulate knowledge. We
have shown in this article how such an approach requires
a combination of methods from, amongst others, machine

learning, knowledge discovery, human computer interaction,
collective adaptive systems, collaboration engineering, and
complexity science.
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