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Abstract 
The work paradigm of crowdsourcing holds huge 

potential for organizations by providing access to a 
large workforce. However, an increase of crowd 
work entails increasing effort to evaluate the quality 
of the submissions. As evaluations by experts are 
inefficient, time-consuming, expensive, and are not 
guaranteed to be effective, our paper presents a 
concept for an automated classification process for 
crowd work. Using the example of crowd generated 
patent transcripts we build on interdisciplinary 
research to present an approach to classifying them 
along two dimensions – correctness and readability. 
To achieve this, we identify and select text attributes 
from different disciplines as input for machine-
learning classification algorithms and evaluate the 
suitability of three well regarded algorithms, Neural 
Networks, Support Vector Machines and k-Nearest 
Neighbor algorithms. Key findings are that the 
proposed classification approach is feasible and the 
SVM classifier performs best in our experiment. 
 
 

1. Introduction  

Already in his 2005 bestseller ‘The wisdom of 
the crowd’, Surowiecki has outlined the potential of a 
new work paradigm: broadcasting tasks to “smart 
people” outside the organization [1]. Meanwhile, this 
organizational concept of crowdsourcing has surged 
and found application in a wide number of areas and 
at different stages of value creation [2]. 

Crucial to the successful implementation of 
crowdsourcing is the use of an open call or broadcast 
search [3] and a large network of potential 
participants [2] in order to receive many submissions 
by the crowd to ultimately solve the problem [4]. 
Typically, submitted crowd work is evaluated by a 
jury of experts who are part of the sponsoring firm 
[5]. This manual procedure poses a dual challenge of 
efficiency and effectiveness, which is currently not 
answered [6]. 

First, we face a challenge of efficiency. 
Evaluation of crowd work can be very time-
consuming due to the sheer number of submissions. 
In the example of Google’s 10^100 project, 3,000 
employees took part in the evaluation of submissions. 
Nonetheless, evaluation of the 150,000 submissions 
delayed the project for 24 months [7]. The question 
arises whether human experts are the most efficient 
alternative to assess crowd work. 

Second, there is the challenge of effectiveness. 
Experts recruited from the sponsoring firm are 
subject to mental barriers, most important the “not 
invented here” syndrome [8]. It has also been shown 
that, on average, expert panels do not provide 
predictive power concerning the success of the 
evaluated product [9]. The question hence arises 
whether human experts are the most effective 
possibility to assess crowd work. 

Our research 1makes a contribution to the field of 
crowdsourcing by i) examining the problems of 
evaluation and ii) proposing a process to improve 
efficiency and effectiveness of evaluation. This 
process goes beyond current, human-based 
approaches to evaluation. It is based on machine-
learning algorithms for the classification of crowd 
work, using attributes identified from literature that 
can be used as input for the machine-learning 
algorithms.  

 
For our research, we focus on the evaluation of a 

crowdsourcing project: The PatViz project aims to 
improve accessibility of expert knowledge coded in 
nomenclature. Using the example of patent texts 
which require technical knowledge as well as fluency 
in the peculiar style of writing in combination with 
legal terms, informally known as ‘legalese’, to be 
assessed and understood, the PatViz approach 
follows the work by Shinmori et al. [10]. The 
approach by Shinmori et al. makes patent texts more 
accessible for legal laymen by replacing or 
                                                
1 Our work was supported by the Peter-Pribilla-Foundation and 
grants CNS 0855157 and CCF 0937139 from the U.S. National 
Science Foundation. 
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explaining complex terms in the original patent texts 
using words that are easier to understand. Going one 
step further in the PatViz project, a crowdsourcing 
effort generated transcripts from 55 patent texts into 
plain English, rewriting complete patent abstracts 
instead of only replacing single words or phrases. 

The PatViz project decided to have these 
transcripts composed not by designated individuals 
who are experts in the field of the patent and also 
have a fair understanding of the legal terminology, 
but by legal laymen in a crowdsourcing approach. 
Thus, participants on Amazon Mechanical Turk were 
asked to generate the transcripts and to adapt the 
patent’s use of language as well as its logical and 
narrative structure [11] to a more readable form. As a 
result of the crowdsourcing activity, 550 transcripts 
of patent texts have been collected. This approach is 
both cheaper and faster compared to have the 
transcripts written by experts. However, as is the 
nature of crowd work, these transcripts are of 
different accuracy and understandability and have to 
be evaluated. The traditional path to evaluation, i.e. 
the recruitment of experts to assess the transcripts 
generated by the crowd would exhaust the savings in 
time and money realized by employing laymen as 
transcribers in the first place. 

Thus, we devised a machine-learning based 
classification approach for patent texts simplified by 
laymen. To achieve this, we build on current research 
in the fields of patent information retrieval, computer 
linguistics and machine-learning to determine 
transcript attributes that can be used for classification 
as well as evaluate different machine-learning 
approaches to perform this classification. In order to 
test the feasibility of our approach and evaluate the 
resulting classification, we conducted a set of 
experiments to test different classification approaches 
on the 550 transcripts of 55 patent texts that had been 
generated by the crowd on Amazon Mechanical 
Turk. 

2. Related work 

The research we are presenting in this article 
covers aspects in patent information retrieval and 
readability/reading level assignment using machine-
learning approaches. Hence in this section, we give 
an overview over the body of related work that 
already exists and can be taken advantage of when 
combining the different approaches. 
 

In current publications on patent information 
retrieval many different areas of interest are 
described. One major area of interest concerns 
different approaches to searching patent texts, e.g. 

high recall searches where as many as possible 
applicable patents are retrieved from a collection 
[12], and how those algorithms can be evaluated [13]. 
Another strand of research, that is highly relevant to 
our research, deals with classifying patent texts 
automatically. Benzineb and Guyot [14], e.g., employ 
machine-learning algorithms for assigning one or 
more categories to a patent that is not categorized in 
one of the given patent classification systems. Koster 
et al. [15] apply linguistic techniques to this task of 
classifying patent texts. Al Hasan and Spangler [16] 
also employ linguistic analysis, however their aim is 
to rank patents in a collection based on their novelty. 
Shinmori et al. [10] use language processing and 
even go one step further and attempt to improve the 
readability of patent texts automatically. 

 
Readability assessment of texts is one of the 

major fields of research in linguistics and hence 
numerous different readability indices are described 
by literature. Among those used most often are the 
Flesch Reading Ease Scale, the Flesch-Kincaid 
Readability Formula, the Gunning Fog Index, SMOG 
Readability Formula, the Coleman-Liau Index and 
the Fry Readability Graph [11, 17-21]. As it would 
exceed the scope of this paper to compare all these 
approaches, we would like to highlight two indices 
mentioned in the literature that are very relevant for 
our approach. The Flesch Reading Ease Scale [22] 
measures the readability of text between grade 5 and 
college level. To calculate the readability, the 
underlying formula considers the average sentence 
length and average word length of a text. The 
Gunning Fog Index [23] measures the readability of 
texts between grade 4 and college level. In contrast to 
the Flesch Reading Ease Scale, the Gunning Fog 
index focuses on the average number of words per 
sentence and the percentage of words with three and 
more syllables in the text. As in the case of these two 
readability scores, such linguistic characteristics of 
the texts are the basis for readability assessment by 
the other approaches. 

 
Heilman et al. [19] and Scarton et al. [21] both 

attempt to find an algorithmic readability assessment 
for texts. Heilman et al. approach this by evaluating 
different statistical models and features for automated 
reading difficulty prediction, while Scarton et al. 
employ a machine-learning approach for their 
readability assessment, using different linguistic 
attributes as input for the machine-learning approach. 
A slightly different approach, but also using a 
machine-learning algorithm, is presented by Meara, 
Rodgers and Jacobs [24]. They find assessments for 
text quality written by second-language learners. 
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While not directly concerned with readability the 
approach of using linguistic measures as an input for 
a neural network seems very applicable to our 
research.  

3. An Automated Classification Approach 

The main objective of our work is to present an 
approach that allows automating the classification of 
text-based crowd work into different classes. We 
base our research on existing research in related 
domains, most importantly machine learning for 
classification tasks as well as computer linguistics. 
As an example, we are using complex patent 
abstracts simplified by laymen – originating from the 
PatViz project – that are to be classified in two 
dimensions i) the correctness of the simplified text 
compared to the original text and ii) the ease of 
reading of the simplified texts, i.e. their readability.  

 
In this section, we describe our approach and 

give an overview over the principles used in the 
individual process steps and illustrate them using the 
PatViz evaluation as case study. In our approach, we 
first gather the object for classification, the 
transcripts, define classes and determine a “gold 
standard” to evaluate the machine-learning 
approaches against (3.1). Parallel to that, we identify 
possible attributes used by the classifier  (3.2) and 
select the most promising ones (3.3), both referencing 
extant literature. After this, we train different 
machine-learning algorithms for classification and 
use them to classify the crowd input (3.4). The final 
step is selecting a classification algorithm based on 
its classification quality (3.5 & 4). 

3.1 Corpora, Classes and Gold Standard 

In computer linguistics, the objects of analysis is 
referred to as the corpus. For our research aiming at 
classifying simplified patent abstracts, the sources for 
our corpora are patent texts and the laymen generated 
simplified texts. We obtained the text bodies 
considered in our case study from two sources: 
randomly selected patent abstracts from the United 
States Patent and Trademark Office and crowd 
generated patent abstract transcripts created by users 
on the Amazon Mechanical Turk Platform. 

 
The corpus of the patent abstracts contains the 

text abstracts of 55 patents, randomly chosen from 
patents issued in December 2010 and covering topics 
related to Computer Science / Information Systems. 
The latter constraint is necessary due to our access to 
domain experts’ subsequent generation of the 

reference classification of our corpora. The patent 
topic, as found in the International Patent 
Classification system, occurring most often is 
“Computing; Calculating; Counting” (n=39), 
followed by “Electric Communication Technique” 
(n=27), “Information Storage” (n=4) and 
“Signalling” (n=3). The corpora of the patent 
transcripts are comprised of ten crowd-generated 
transcripts of the original abstract per patent. We 
obtained the transcripts using the Amazon 
Mechanical Turk marketplace, offering a reward of 
0.80 USD for participants to complete the task with 
the following description: 

 
Formal technical texts are often hard to 

understand for the average reader. Please rewrite 
such a text in words that are easier to understand. 
Your abstract should include around 4-5 sentences. 

 
The resulting 55 corpora of 10 texts each are the 

main subject for our research, aiming at classifying 
those crowd-generated texts based on their 
readability and their correctness in reproducing the 
patent abstracts contents. To establish a gold 
standard, i.e. the reference classification taken to be 
correct, we asked 8 domain experts to classify all 550 
transcripts regarding the two dimensions we are 
interested in –readability and correctness– as very 
high, high, low or very low. The gold standard serves 
the purpose of a training set for the machine-learning 
algorithms as described in section 3.3. In order to 
ensure the reliability of the gold standard, we 
identified the outliers for both readability and 
correctness for each transcript corpus. To do this we 
applied Peirce’s criterion, which is commonly used 
for outlier identification [25]. The average of the 
remaining expert ratings finally represent the gold 
standard classification used for the next steps in the 
evaluation process. Results of outlier identification 
and adaption of the classifications are consistent with 
a RSME analysis of the expert ratings. Figure 1 
shows the gold standard resulting from the 
classification done by the experts.  

 

 
Figure 1: Expert classification (Gold Standard) 
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As we were expecting attempts to cheat on the 
task (see e.g. [16]) we also checked for unusual 
transcripts and found six transcripts by users that 
were overburdened by the task, writing i.e., “I really 
don’t know” or “I don’t understand the text”, but 
only four real attempts to cheat, e.g. by copying the 
text instead of transcribing it or entering random text. 
We kept these texts in the copora, as such outliers are 
always to be expected in crowd-based projects and 
also need to be identified correctly in a machine-
learning based classification approach.  

3.2 Attribute Identification 

In order to be able to automatically classify the 
transcripts, we need to identify and later select a set 
of attributes that represent different aspects of the 
texts. To describe the individual transcripts we can 
use attributes covering different aspects of the text. 
On one hand, we can use attributes describing the 
linguistic characteristics of the text, on the other hand 
we can use attributes that describe the relation 
between the transcript and the original patent 
abstract.  

 
3.2.1 Linguistic attributes. For the linguistic 

aspects we rely on the widely used Coh-Metrix 
analysis tool (c.f. [11, 21, 26]) to cover all basic 
aspects of the texts. As the classification task at hand 
works on short transcripts of longer, more complex 
texts, we also include metrics calculated by the 
Recall-Oriented Understudy for Gisting Evaluation 
(ROUGE) evaluation tool, which is used to evaluate 
the quality of text summaries [27]. 

 
Coh-Metrix is a web-based tool for analyzing 

texts regarding cohesion relations, language used and 
readability [28]. The attributes Coh-Metrix calculates 
are divided into five categories [29]: General Word 
and Text Information, Readability Indices, Syntax 
Indices, Referential and Semantic Indices and the 
Situation Model Dimensions. 
• General Word and Text Information includes 

attributes on word and text level, referencing e.g. 
the usage frequency of a word in the English 
language [29]. Examples for attributes include 
the number of words and sentences in the text, 
average number of words per sentence or the 
hypernym value to describe a word’s 
abstractness (c.f. [30]). 

• The Readability Indices describe how easy it is 
for a reader to understand a text. Coh-Metrix 
calculates two of the most common attributes, 
the Flesch Reading Ease and the Flesch-Kincaid 
Grade Level [29]. We additionally considered 

the Gunning Fog index [23], SMOG [20] and the 
Coleman Liau index [17] as alternative 
approaches to assess the readability of text often 
found in literature. 

• Syntax Indices include attributes that assess the 
syntactic complexity and composition as well as 
the frequency of syntactic classes for a text [29]. 
Attributes are, e.g. incidence scores for noun-
phrase constituents or negation expressions, rate 
of pronouns and number of additive, temporal, 
logical, or causal connectives in a sentence. 

• Referential and Semantic Indices describe the 
cohesion within a text [29]. One example for an 
attribute is, e.g., how often a noun refers to 
another constituent in the text. Another attribute 
is the adjacent stem overlap, the ratio of 
neighboring sentences with one or more common 
word stems. 

• The Situation Model Dimensions aim at 
reflecting the mental model the text spans up. 
Attributes for the Situation Model Dimensions 
cover the five situational dimensions causation, 
intentionality, time, space and protagonists [29]. 
 
Using the web-based tool hosted by the 

Department of Psychology at the University of 
Memphis, we calculated the values of 56 attributes 
for all 550 transcripts. Some preprocessing for the 
transcripts was necessary, as the texts were 
sometimes syntactically malformed, e.g., two periods 
following each other, and Coh-Metrix appeared to 
crash when trying to work with the “empty sentence” 
between such two periods. Except for removing these 
elements, no other alternations were carried out on 
the transcripts. 

 
The second tool for text analysis, the ROUGE 

package, aims at evaluating the quality of computer- 
generated text summaries [27]. The quality of a 
summary is determined by ROUGE by comparing the 
summary to “ideal” summaries, usually created by 
humans. In this comparison between the computer 
generated summary and the ideal summaries, 
linguistic measures like the number of overlapping 
units, e.g. word pairs, are used. The main algorithms 
described by Lin [27] are based on n-grams 
(ROUGE-N, where n is the length of the n-gram), 
(weighted) longest common substrings (ROUGE-L, 
ROUGE-W) or skip bigrams and unigrams 
(ROUGE-S, ROUGE-SU). Overall they present 17 
ROUGE scores: ROUGE-N with n = 1 to 9, 
ROUGE-L, ROUGE-W as well as ROUGE-S and 
ROUGE-SU with maximum skip distances of 0, 4, 
and 9.  
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We calculated all the ROUGE scores using the 
patent abstracts and the crowd transcripts as input. 
This allows us to evaluate whether one of these 
ROUGE scores can be used as an attribute for the 
machine-learning algorithms to classify the 
transcripts. 

 
3.2.2 Relational attributes. Concerning the 

relational aspects between the transcript and the 
original abstract several possible attributes found in 
data clustering approaches can be used. The rationale 
behind this is, that a patent abstract and its transcripts 
form a logical cluster of texts belonging together. So 
in addition to linguistic measures based on single 
transcripts, we apply measures of cluster cohesion 
and transcript separation are taken from data mining 
research to determine the quality of clusters and the 
degree with which transcripts fit in their cluster [31]. 
As a result, we derive the three attributes from library 
sciences and data mining: individual document 
distances, patent clusters’ cohesions and transcript 
silhouettes. 

 
The document distance or Euclidean distance 

between two documents is a measure of dissimilarity 
between the two document vectors. It is derived from 
the cosine of the angle between the document 
vectors, found by incorporating the Euclidean norm 
of each document’s frequency vector and the dot 
product of the two documents’ vectors. 

Once the distances between all the documents 
are known, the clusters’ cohesions and the 
transcripts’ silhouettes can be calculated. In this 
context, the cohesion of a cluster of documents is 
defined as the average distance between documents 
within the cluster. The cohesion thus is based on the 
distance function and shares the range in possible 
values [31]. 

The silhouette of a transcript is an attribute for 
how well it fits in its cluster compared to the other 
clusters. It hence puts the transcript’s average 
distances to documents within its own cluster in 
relation to the transcript’s minimum average 
distances to documents in different clusters [31, 32]. 

3.3 Attribute Selection 

After identifying the 74 potential attributes from 
the literature and calculating the values for these 
attributes for the corpora, the attributes to be used by 
the classification algorithms have to be selected. In 
doing so we aim at removing redundant attributes 
(e.g. if one attribute can be expressed using one ore 
more other attributes) and irrelevant attributes that 
only reduce the accuracy of the classifications by 

increasing the dimensionality of the problem set [33]. 
For our research we use the InfoGainAttributeEval 
and the SVMAttributeEval evaluators of the WEKA 
software package [34]. 

 
The InfoGainAttributeEval algorithm determines 

the importance of an attribute by determining the 
information gain by this attribute with respect to the 
class, it was chosen for our work due to its popularity 
in the relevant literature, e.g. [21]. As we aim at 
classifying transcripts in two dimensions, correctness 
and readability, we ran the filter once for each 
dimension. For the “correctness” class, the algorithm 
kept 42 attributes that do contribute to information 
gain, for the “readability” class, it kept 44 attributes. 
The table below lists the top ranked attributes. Two 
things are especially noteworthy here: the dominance 
of the different ROUGE algorithms and the inclusion 
of two readability attributes for the readability class, 
while none is chosen for the correctness class. 

Table 1: Highest ranked attributes (InfoGain) 

Correctness Readability 
ROUGE-SU Document distance  
ROUGE-S ROUGE-2 
ROUGE-L ROUGE-S 
ROUGE-W ROUGE-SU 
ROUGE-2 ROUGE-L 
Document distance ROUGE-W 
Document silhouette  Document silhouette  
Number of words Number of words 
Type-Token ratio Flesch reading ease 
Pronouns-noun ratio Gunning fog score 

 
The SVMAttributeEval algorithm based on [35] 

determines the importance of an attribute by using 
the output of a classifier based on Support Vector 
Machines (SVM, see next section). This alternative 
approach was chosen to select attributes in a way that 
allows a better comparison of the SVM-based 
classification algorithm with other types of classifiers 
later in the process. As SVMAttributeEval does not 
identify attributes that don’t contribute to the goal of 
the classification algorithm, but simply gives a 
ranked list of attributes, we have selected the same 
number of attributes the InfoGain algorithm 
identified as relevant – i.e. 42 for correctness and 44 
for readability – to minimize (dis)advantages 
between the two selection algorithms based on the 
number of attributes used. Consistently with the 
theoretical background, both algorithms also rank 
readability attributes (Flesch reading ease, Gunning 
fog, SMOG and Coleman Liau) among the most 
relevant attributes for readability classification. For 
the classification of correctness though, these scores 
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show only minor influence. It is also noteworthy that 
the different ROUGE scores dominate the attribute 
rankings and are the top ranked attributes for both 
classification dimensions when using the InfoGain 
algorithm.  

Table 2: Highest ranked attributes (SVM) 

Correctness Readability 
Neg. causal connectives ROUGE-4 
ROUGE-S Flesch reading ease 
ROUGE-L ROUGE-L 
ROUGE-SU ROUGE-S 
Log freq. of content 
words  

Sentence syntax 
similarity 

ROUGE-4 ROUGE-SU 
Ratio causal particles to 
causal verbs 

Log min. raw freq. of 
content words 

Number of words SMOG 
Document distance Coleman Liau 
No of noun-phrase const. Number of words 

3.4 Classification Algorithms  

Current literature describes a plethora of possible 
machine-learning algorithms for classification, 
reviews of most approaches can be found in [24, 36]. 
For the scope of our research we limit ourselves to 
three approaches very frequently used for automatic 
classification [37, 38]: Artificial Neural Networks 
(NN), Support Vector Machines (SVM) and the k 
Nearest Neighbors (kNN) approach. 

 
An artificial Neural Network is a network 

comprised of interconnected nodes, also called 
neurons, organized in layers [39, 40]. There are 
typically multiple nodes in the input layer –which in 
our case represent the different attributes– one or 
more hidden layers –nodes in those layers are used 
only internally with no distinct meaning– and one or 
more nodes in the output layer –in our case one node 
representing either the correctness or the readability. 
Each artificial neuron reads the values of its input 
neurons, weighs and aggregates them before using 
the result as input for its activation function, which 
returns the neuron’s output value. Learning is 
achieved by backpropagation, where the weighs used 
by the individual neurons are adapted so that the 
network’s output value(s) for a set of training input 
come closer to the given correct output value(s) in the 
training set. The type of artificial Neural Network we 
are using is a Multilayer Perceptron (MLP), a 
network that maps the input data forward to the 
output node in a directed graph.  

 

In contrast to this, the Support Vector Machines’ 
underlying principle is to take a set of training data as 
an input and find hyperplanes separating the known 
classes in the multidimensional representation of the 
data [41]. In our case, each of the attributes is 
represented in one dimension, i.e. a SVM classifier 
for two attributes would find lines separating the 
clusters in two-dimensional space, for three attributes 
it would find planes separating the clusters in three-
dimensional space and so on. When finding a 
hyperplane that separates clusters, the optimal 
solution is the hyperplane that generates the 
maximum margins between itself and the classes 
[41], as this ensures the best results after training (cf. 
Figure 2). 

 

 
Figure 2: Example for an optimal hyperplane [41] 

The k Nearest Neighbors approach is one of the 
simplest classification algorithms [42]. Similar to 
Support Vector Machines, the individual attributes 
span a multidimensional representation with the 
training set populating the space. Elements are 
classified, based on their relative distances in this 
multidimensional space to members of the respective 
classes, taking the k nearest neighbors into account. 
So given two classes A and B, a new element e 
would be classified as belonging to A by a 5 Nearest 
Neighbor classifier if at least three of its nearest 
neighbors are classified as A. The choice of an 
appropriate number for k is vital for the quality of the 
classifier, as noted by [42]. As [21] tested values 
from 1 to 10 for their two-class problem and found 
that k=7 resulted in the best classifications we tested 
an interval of 1 to 60 for our problem using the 
quality criteria below and found k=10 to deliver the 
best classification results. 

 
Prior to putting these algorithms to use, they 

have to be properly trained. For Neural Networks this 
is done using the backpropagation approach 
described above, for the other algorithms the set of 
training data creates the multidimensional working 
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space and is used to find the separating hyperplanes 
(SVMs) or as reference points (kNNs). One common 
technique to train machine-learning algorithms is to 
use a subset of elements from the gold standard, [36] 
mentions a sample size of 2/3, as training set for the 
algorithms. Another option is cross-validation, where 
the input set is partitioned into mutually exclusive 
and equally-sized subsets of data and the algorithm is 
trained on each of these subsets and the remaining 
subsets are used validation data [36]. As we try to 
reduce the expert effort for classifying large datasets, 
we are looking for algorithms that perform well using 
only little expert input as training data. We hence use 
a 10-fold cross validation approach for training our 
algorithms, meaning that we check the algorithm 
quality with 1/10th of the dataset as training input. In 
a real world example this means that 10% of the 
crowd work would have to be classified by experts 
and used as training data for the machine-learning 
classifier before attempting to classify the other 90% 
without expert involvement. Using the cross-
validation method also ensures that the results are not 
biased by (un)fortunate random selections from the 
gold standard as training data. 

3.5 Algorithm Selection & Quality Criteria 

The selection of classification algorithms for a 
classification problem is usually based on the 
accuracy of the classifier, i.e. what percentage of 
elements are classified correctly [36]. After training 
the algorithms as described before, i.e. by taking a 
sample of the gold standard as a training set, the 
remaining subset from the gold standard –called the 
verification set– is classified by the algorithms. The 
results of the individual classifications can then be 
compared to the known classification in the 
verification set. To compare algorithms based on 
these results, the fields of information retrieval and 
pattern recognition use the precision, the recall, and 
the f-score of an algorithm. The values of all three 
measures lie in an interval between 0 (worst) and 1 
(best). This can directly be applied to the 
classification problem. For classification, the 
precision is defined as the number of items in a class 
that are classified correctly divided by the total 
number of items classified as members of that class. 
Recall on the other hand is defined as the number of 
items in a class that are classified correctly divided 
by the total number of items that actually are 
members of that class. The f-score combines both the 
precision and the recall of a classification and 
represents a weighted average of those values. 

An example: our algorithm predicted 5 elements 
as members of class A, of which 3 are actual 

members of class A while 2 are members of class B. 
Also, in reality, class A contains 6 elements. Here, 
our algorithm’s precision for class A equals 3/5 = 0.6, 
the recall 3/6 = 0.5 and the f-score is about 0.55. 

 
Another approach for determining the quality of 

classification approaches also mention Receiver 
Operating Characteristic (ROC) curves, a 
representation of the interrelation between the 
approach’s true positive rate and false positive rate 
[43]. The area under the curve (AUC) is then used as 
a quality measure, with a value of 1 for a perfect 
classifier and 0.5 for random classifications [44]. To 
evaluate the results of our case study, we will hence 
use precision and recall information in combination 
with ROC curves and the rate of correctly classified 
texts to compare the different algorithms.  

4. Results of the classification experiment 

In order to determine which machine-learning 
algorithm is most suitable for the task of classifying 
the crowd transcripts and to evaluate the effect of 
filtering out attributes we evaluated all three 
algorithms for individually for both dimensions and 
used the complete set of attributes identified in the 
literature (c.f. Table 3) as well as the attribute sets 
filtered using the InfoGain (c.f. Table 4) and SVM 
(c.f. Table 5) algorithms. As quality criteria we used 
the accuracy of the classification (acc.), i.e. the 
percentage of correctly classified transcripts, the f-
score (f-sc.) combining the classifier’s recall and 
precision, and the area under the ROC curve (AUC, 
c.f. Figure 3). 

 
Figure 3: ROC Curves for classifiers using SVM 

filtered input to find transcripts’ correctness 

In all three scenarios, the SVM algorithm 
achieved the best classification results concerning the 
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dimension of transcript correctness. The same is true 
for the classification of transcript readability when 
using the raw input. But when filtering out irrelevant 
attributes, the performance of the 10-Nearest 
Neighbor comparison matches and slightly 
outperforms the results of the SVM algorithm. The 
Multilayer Perceptron did not generate the best 
classification result in any of the scenarios or for any 
of the dimensions. 

 
As expected, performing the attribute selection 

using the InfoGainAttributeEval algorithm and the 
SVMAttributeEval algorithm did indeed lead to 
better classification results for the AUC measure in 
both dimensions and for all classification algorithms. 
However, for the two other measures this 
improvement cannot be seen. When filtering out 
attributes using the InfoGain algorithm, accuracy and 
f-scores do not change much, with the exception of 
accuracy dropping for the SVM classifying 
readability. Using the SVMAttributeEval algorithm 
to filter out slightly improves the SVM classification 
of correctness while its classification of readability 
drops considerably. 

Table 3: Classification quality of unfiltered input 

 Correctness Readability 
 Acc. f-sc. AUC Acc. f-sc. AUC 
MLP 0.564 0.563 0.730 0.635 0.628 0.694 
SVM 0.615 0.609 0.792 0.713 0.683 0.710 
kNN 0.565 0.538 0.722 0.695 0.654 0.690 

 

Table 4: Classification quality after InfoGain filter 

 Correctness Readability 
 Acc. f-sc. AUC Acc. f-sc. AUC 
MLP 0.538 0.537 0.732 0.636 0.635 0.692 
SVM 0.615 0.605 0.804 0.675 0.654 0.727 
kNN 0.595 0.570 0.748 0.698 0.652 0.713 

 

Table 5: Classification quality after SVM filter 

 Correctness Readability 
 Acc. f-sc. AUC Acc. f-sc. AUC 
MLP 0.567 0.565 0.745 0.635 0.629 0.714 
SVM 0.620 0.611 0.813 0.665 0.652 0.734 
kNN 0.553 0.530 0.745 0.704 0.665 0.721 

 
Comparing the measures for all algorithms to 

other examples in the literature, they would be judged 
as no better than fair for the Multilayer Perceptron 
and the 10-NN algorithm and just barely good for the 
SVM algorithm. However, most of the classification 
tasks found in literature only consider two classes 

(e.g. true and false), while we are working with four 
classes (very low, low, high, very high) per 
dimension. Hence we consider accuracy levels well 
above the guessing probability (25%), an f-score 
above 0.6 and an AUC over 0.8 as very satisfactory 
results for our experiment. This assessment is shared 
by potential users in practice: we have been invited to 
discuss the possible integration of our approach in a 
tool for national and trans-national patent offices. 

5. Discussion and Future Research 

In summary, the research presented in this paper 
comprised development and testing of an automated 
approach to improve efficiency and effectiveness of 
evaluation. The process is based on extant knowledge 
in linguistics and machine-learning which we perused 
to identify possible attributes as input for machine-
learning based classification algorithms, to select the 
most relevant attributes and to evaluate the 
classification quality of different machine-learning 
based classifiers. Using the case example of patent 
texts, we have demonstrated the potential of an 
algorithm-based approach to evaluate large sets of 
crowd work. Since our approach is based on 
fundamental linguistic and machine learning 
principles, it can easily be generalized for use on 
texts in other domains. 
 

As indicated for related classification tasks by 
extant literature, e.g. [38], our research showed that 
Support Vector Machines performed very well in all 
cases and are a good choice for solving our initial 
problem. Since it was part of our research to compare 
the applicability and performance of different 
algorithmic classification approaches, and since the 
SVMs we trained already outperformed the other 
algorithms, we did not focus on optimizing the 
SVMs. Concerning future research, we judge it 
appropriate to further optimize the SVMs used for 
classification, following [45], before applying such a 
classifier in a real world scenario. 

 
From the conclusions drawn in [27], we expected 

to use one of the attributes calculated using either 
ROUGE-2, ROUGE-L, ROUGE-W or ROUGE-S as 
these algorithms worked well in single document 
summarization tasks. As ROUGE-1, ROUGE-L, 
ROUGE-W and ROUGE-SU algorithms also 
performed very well evaluating very short 
summaries, we also expected that one of them might 
provide a suitable input for our machine-learning 
algorithm. This was confirmed when using the 
InfoGainAttribute filtering algorithm, which ranked 
scores from ROUGE-2, ROUGE-L, ROUGE-S, 
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ROUGE-SU and ROUGE-W at the very top for the 
dimension of correctness as well as the readability. 
However, it was unexpected that the different 
ROUGE algorithms would be ranked so highly by 
both filtering algorithms. 

From the logic behind input attribute filtering 
laid out in existing studies, e.g. [33], we did not 
anticipate that classifier quality was sometimes worse 
when using the filtered attribute input compared to 
classifier quality when using the complete set of 
attributes. This surprising result might be explained 
by the complete attribute set, that also includes 
attributes irrelevant for the classification task, leading 
to overfitting of the machine-learning algorithms, i.e. 
the classifiers adjusted to relevant attributes as well 
as to random, irrelevant attributes (i.e. noise) during 
the learning phase [40]. Even though this effect was 
rather weak in our experiment, future research could 
try to develop a more nuanced understanding of the 
relationship between the set of attributes and 
classifier quality and test whether the effect is related 
to overfitting or if there are other causes explaining 
the unexpected quality degradation. 

 
In the empirical setup of crowd work, one 

finding concerning the results of the 
InfoGainAttributeEval algorithm is particularly 
interesting. When we tested the InfoGain attribute 
evaluation algorithm, it barely recognized a gain 
from the attribute that represents the rating of 
complexity and understandability by the person who 
wrote the transcript. As the algorithm found that the 
creators’ input leads to very little information gain 
when establishing classification, the practice of self-
rating found in some open innovation platforms 
appears not to be useful for highly complex tasks. In 
this area, our research holds important implications 
for both research and practice in the field. The 
current tendency to establish a classification of crowd 
work by a combination of self-assessment and peer 
evaluation (advocated among others by [46]) has to 
be reconsidered in the light of our findings. Related 
to this insight concerning self-assessment, future 
research should also determine whether crowd-rating, 
i.e., asking crowd-workers to rate the results of their 
peers, may be a source for additional features that 
could be used as input for the classification 
algorithms and help improve the classification result. 

 
Finally, one aspect of crowd work was omitted 

when preparing the data for the classification 
algorithms so far. We decided not to filter out 
cheating attempts, but train and evaluate the 
machine-learning algorithms with the complete set of 
crowd work as it resulted from Amazon Mechanical 

Turk. As a next step towards a stable classification 
approach, future research should explore the effects 
of filtering out crowd work by overburdened users 
and cheaters. From our research we expect the 
filtering itself to be well feasible by using the 
attributes we already identified. For instance, we 
were already able to identify some types of worthless 
results from crowd-work that could be eliminated 
before an automated classification: first, (too) short 
transcripts by overburdened users and cheaters have a 
significantly smaller document norm compared to 
other transcripts; second, transcripts that are identical 
to the original text have a minimal dissimilarity; and 
third, transcripts that are completely unrelated show a 
large dissimilarity to the original text and true 
transcripts. To further refine the automated process to 
evaluate crowd work future research will need to 
evaluate the effect of removing those outliers before 
attempting to perform a classification and if there is a 
positive effect identify other attributes to filter out 
such foils. 
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