
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

Please quote as: Hoffmann, H. & Söllner, M. (2014): Incorporating Behavioral Trust
Theory Into System Development for Ubiquitous Applications. In: Personal and
Ubiquitous Computing, Ausgabe/Number: 1, Vol. 18, Erscheinungsjahr/Year: 2014.
Seiten/Pages: 117-128.

ORIGINAL ARTICLE

Incorporating behavioral trust theory into system development
for ubiquitous applications

Holger Hoffmann • Matthias Söllner

Received: 22 February 2012 / Accepted: 17 October 2012 / Published online: 22 November 2012
! Springer-Verlag London 2012

Abstract Trust has been shown to be a key factor for
technology adoption by users, that is, users prefer to use

applications they trust. While existing literature on trust

originating in computer science mostly revolves around
aspects of information security, authentication, etc.,

research on trust in automation—originating from behav-

ioral sciences—almost exclusively focuses on the socio-
technical context in which applications are embedded. The

behavioral theory of trust in automation aims at explaining

the formation of trust, helping to identify countermeasures
for users’ uncertainties that lead to lessened trust in an

application. We hence propose an approach to augment the

system development process of ubiquitous systems with
insights into behavioral trust theory. Our approach enables

developers to derive design elements that help foster trust

in their application by performing four key activities:
identifying users’ uncertainties, linking them to trust

antecedents from theory, deducting functional require-

ments and finally designing trust-supporting design ele-
ments (TSDEs). Evaluating user feedback on two

recommender system prototypes, gathered in a study with
over 160 participants, we show that by following our

process, we were able to derive four TSDEs that helped to

significantly increase the users’ trust in the system.

Keywords Trust support ! Uncertainty ! Antecedent !
Design elements ! Sociotechnical system ! Evaluation

1 Introduction

Current research conducted in the disciplines of computer

science and in the behavioral sciences has recognized trust
as a factor of major importance in system design. The

understanding of the trust concept itself, the formation of

trust and insights into how to foster trust vary between and
even within the disciplines though. In computer science,

most of the research on trust focuses on aspects like

information security, authentication and access control—
specifically on how to model trust and define cooperative

strategies in distributed systems based on this understand-

ing [1]—and only little research effort is spent on devel-
oping an understanding of trust in human–computer

interaction [2, 3]. In the behavioral sciences, the focus in

trust research is on understanding trust in social situations,
with extant works on trust in automation [4, 5] aiming to

explain the trust relationship of a user with technology.

One of the major factors in behavioral science is to work
with the users’ perception of a system in order to under-

stand why they trust or distrust a system and what can be
done to foster their trust.

Developing novel ubiquitous applications presents a

major challenge when using traditional system develop-
ment processes, as those systems are not isolated, but used

in a social and organizational context and are thus subject

to user needs and perceptions in this context [6]. Research
on technology acceptance suggests that in order to create

successful applications, these needs and perceptions have

to be addressed, with trust as a key determinant of tech-
nology adoption and usage [4, 7]. This is why improving

system security alone is not sufficient to raise user accep-

tance. In order to affect the users’ perception of the sys-
tem’s trustworthiness, trust-supporting measures also have

to be brought to the user’s attention—for example, by

H. Hoffmann (&) ! M. Söllner
Kassel University, Kassel, Germany
e-mail: hhoffman@uni-kassel.de
URL: http://www.wi-kassel.de

M. Söllner
e-mail: soellner@uni-kassel.de
URL: http://www.wi-kassel.de

123

Pers Ubiquit Comput (2014) 18:117–128

DOI 10.1007/s00779-012-0631-1

adding a graphical element like a padlock icon into the

address bar of the web browser.
To improve trust in—and consequently foster usage

of—ubiquitous applications, we present an approach to

augment the traditional software development process with
insights into behavioral sciences in order to create trusted

ubiquitous applications. The approach is designed to spe-

cifically cope with user perception in the form of require-
ments and design elements and is hence related to human

computer interaction (HCI) research. Our approach is
designed to be usable for system developers alongside

software development process models that follow a rigid

structure (e.g., V-Model XT) as well as agile development
processes (e.g., SCRUM). Consequently, the resulting

functional requirements and tangible designs for trust-

supporting design elements can be used in conjunction with
approaches covering traditional trust aspects in computer

science, like secure communications, authentication, etc.;

developers are also able to conduct the steps of our
approach ex-post, that is, our approach can be used to

improve existing ubiquitous systems.

In the following sections, we briefly outline the different
perspective of trust in behavioral research concerning

technology acceptance compared to computer science

research. Building on the research on trust in automation,
we then present a process for employing the underlying

trust theory as a way to define requirements and derive

design elements during system development. We applied
this approach to DinnerNow, a ubiquitous recommender

system for finding the best restaurant for a spontaneous

visit. In an evaluation with over 160 participants, we were
able to show that the design elements we derived using our

process significantly increased the subjects’ trust in the

application.

2 The different perspective on trust from behavioral
sciences

In current literature on trust in computer science, the topic
of trust appears in many different and rather diverse areas.

Artz and Gil [1] made an attempt to classify the research on

trust in computer science, showing that the understanding
of trust and trust research in computer science revolves

around topics like information security, access control and

reliability in networks and distributed systems as well as
trust in game theory or agent systems and finally trust in the

decision-making process. The underlying concepts differ

concerning the definitions, methods and tools. When con-
sidering the state of trust research in computer science, two

things are especially noteworthy: Firstly, there are cur-

rently very few publications, for example, [8], covering
software engineering methods to improve trust, that is,

there are few rigorous methods to follow for improving

trust. Secondly, while research on dependable and secure
computing [9] already includes system ‘‘attributes’’ for

trusted computing, HCI research—as a bridge between

computer science and the behavioral sciences—hints at the
importance of human perception and special design ele-

ments to foster trust. Sillence et al. [10] found that the look

and feel of a website influences the users’ judgment whe-
ther or not the site was trustworthy, and Stephens [2]

proposes concrete design elements to foster trust on
websites.

The understanding of trust in the behavioral sciences

faces similar problems to those found in computer science,
as there also is no consensus on the definition of trust.

Nevertheless, Rousseau et al. [11] note that many defini-

tions have a common core based on positive expecta-
tions and vulnerability. While early research on trust in

behavioral sciences often focused on trust relationships

between people or organizations—especially in the man-
agement community (e.g., [12, 13])—researchers within

the IS and HCI community began studying trust rela-

tionships between people and technology (e.g., [4, 14]).
Regarding the development of ubiquitous systems, the

work on trust in automation by Lee and See [4] is the

most promising theory, as they define automation as
‘‘technology that actively selects data, transforms infor-

mation, makes decisions or controls processes.’’ This

definition is easily applicable to ubiquitous systems, since
these systems in most cases will conduct several of the

listed actions to fulfill their purpose and support their user.

Consequently, we adapt the understanding of trust in
automation by Lee and See [4] and define trust as the

belief ‘‘that an agent will help achieve an individual’s goal

in a situation characterized by uncertainty and vulnera-
bility.’’ Following this definition, the ubiquitous system is

the agent and the ubiquitous system’s user is the indi-

vidual. The bulk of behavioral literature interprets this
trust as a multi-dimensional latent construct [15], which is

formed by multiple antecedents representing factors for

fostering trust.
Research on trust in automation shares this view of trust

and identifies multiple antecedents leading to user’s trust in

an automated system, classified into one of three ‘‘sum-
mary dimensions’’: performance, process and purpose [4].

Antecedents in the performance dimension reflect the

user’s assessment of the capability of the system in helping
him to achieve his goals, those in the process dimension

reflect the user’s perception regarding the system’s func-

tionality and the degree to which the system’s algorithms
are chosen and implemented appropriately, and finally, the

antecedents in the purpose dimension are indicative of the

user’s assumptions of the system designer’s intention when
developing the system [4, 16].

118 Pers Ubiquit Comput (2014) 18:117–128

123

An exemplary model, incorporating a selection of

antecedents of trust in automation, is shown in Fig. 1. Four
antecedents are classified in the performance dimension:

Competence reflects the user’s rating of the overall suit-

ability of the system to solve his problem. Information
accuracy stands for the user’s assessment of how precise

the information given by the system is. Reliability over

time gauges the user’s assessment how reliable the system
will be in the future. Responsibility represents the opinion

whether the IT artifact has all the functionality needed to
achieve the user’s goal.

Another four antecedents are classified as belonging to

the process dimension: Dependability is the user’s per-
ception whether the system’s reactions are consistent and

reliable. Understandability indicates the user’s ability to

grasp the functionality of the system. Control stands for the
user’s impression of being in control of the system. Pre-

dictability represents the user’s assumptions whether the

system’s behavior can be anticipated.
Finally, three antecedents are classified in the purpose

dimension: Motives measure the issue of whether the user

thinks that the developers truthfully communicated the
system’s intended use. Benevolence of designers is the

indicator of the user’s assessment if the developers have

the users’ interests in mind. Faith stands for the user’s
belief that he can rely on the system in the future.

Next to the very prominent theoretical model by Lee and

See [4], a number of publications offer additional insights
into trust formation in technical systems. Approaching the

trust relationship between users and a technical system

from various points of view, those theories propose various
additional antecedents that play a role in fostering trust.

Collections of possible antecedents, including a definition

of the antecedents and/or references to the original theo-
ries, are presented in [4, 16, 17]. The following table shows

an excerpt from those collections.

The antecedents in trust in automation theory are com-
parable to what is called a system attribute in the taxonomy

by Avizienis et al. [9]. Even though they revolve around

similar concepts, three aspects distinguish them. First, the
point of view is reversed: Avizienis et al. consider system

attributes to be system characteristics, which are fixed in

software and therefore can be determined precisely, while
trust in automation regards the antecedents as the users’

perception—which depends on the individual user and can

be biased or flawed. Second, even though both works share
common names, the meaning is often different, for exam-

ple, defined Avizienis et al. [9] dependability as an inte-
grating concept that encompasses system attributes like

availability and reliability, while Lee and See [4] consider

it an antecedent covering the users’ perception whether the
system’s reactions are consistent and reliable. Third, the

taxonomy of dependable computing is considering six

system attributes, covering the interaction between com-
puter systems, while Lee and See [4] leave the total number

of antecedents open. Using the theoretical framing by Lee

and See as our foundation and augmenting it with ante-
cedents from related theories, we argue that it is possible to

identify software requirements and designs that support the

antecedents and hence foster the formation of users’ trust.
Unlike approaches that attempt to find requirements and

designs for the latent construct of ‘‘trust,’’ this process

helps to systematically establish trust based on theoretical
insights into elements that have been shown to affect it.

3 Creating trust-supporting design elements
for ubiquitous applications

While the potential of incorporating behavioral trust theory

into the system design process has been acknowledged

before, only technical flaws and weaknesses in a system’s
design, implementation or operation are covered by

approaches like vulnerability analyses for fostering trust

concepts found in computer science [20]. Until now
existing research on how to transfer behavioral insights

Dimensions

Antecedents

Process Purpose

Latent construct Trust

U
nd

er
st

an
d-

ab
ili

ty

D
ep

en
da

bi
lit

y

C
on

tr
ol

Pr
ed

ic
ta

bi
lit

y

B
en

ev
ol

en
ce

M
ot

iv
es

Fa
ith

 forms

Performance

In
fo

rm
at

io
n

A
cc

ur
ac

y

C
om

pe
te

nc
e

R
el

ia
bi

lit
y

ov
er

 ti
m

e

R
es

po
ns

ib
ili

ty

Fig. 1 Model of the formation
of trust in automated systems
derived from [5]

Pers Ubiquit Comput (2014) 18:117–128 119

123

into software requirements and ultimately design elements

fostering trust from the behavioristic understanding is
limited to a few publications that rather describe the overall

idea than present a concrete process [21–23].

We propose a process consisting of four steps that
enables developers to systematically derive trust-support-

ing design elements (TSDEs) from theory on trust in

automation (Fig. 2) for their application to render it more
trustworthy for the application’s users. Our process covers

aspects of trust theory as well as requirements engineering
and system design, by taking users’ uncertainties, pin-

pointed in the application context with the users’ help, as

a basis to identify antecedents from behavioral trust the-
ory as remedial measures that help overcome the uncer-

tainties and hence foster users’ trust. These antecedents

are then translated into functional requirements, which
serve as input for arriving at concrete TSDEs in the final

step.

While the process is intended to deliver tangible TSDEs
that can be directly integrated into a system, it is also

possible to only perform steps 1–3 and uses the resulting

functional requirements as input for a traditional system
development process. Decoupling the procedure from the

conventional software engineering process has two

advantages. First, it does not interfere with different pro-
cess styles and can be used in projects following a rigid

structure like the V-Model XT as well as agile projects, for

example, using SCRUM. Second, this standalone process
can be used ex-post, that is, it can be applied to an existing

system that needs improvement.

3.1 Identifying and prioritizing uncertainties

Following the definition of trust by Lee and See [4], it
becomes evident that trust is only relevant in usage situa-

tions characterized by uncertainty. Hence, the first step

toward developing a more trustworthy system is to develop
an understanding of the future system’s users’ uncertain-

ties. Trust in ubiquitous systems is affected by character-

istics such as multiple data sources, data processing by
several service providers as well as context awareness and

adaption to contexts. Literature on requirements engineer-

ing as well as human–computer interaction mentions a
plethora of different techniques that can be used—

sometimes with a small shift in focus—to systematically

determine uncertainties in a systematic manner [6]: A
technique widely used for identifying requirements are

interviews with future users, which can be easily adapted to

also identify uncertainties the users might have. Real-world
scenario descriptions can be used to gain insights into

interviews, even if only abstract system descriptions are

available [24]. Viewpoint-oriented approaches take into
account different perspectives on the system usage and

allow discovering conflicts that can result in uncertainties
[25]. Even ethnographical methods can be used, where the

use of a system is observed from the outside in order to

understand uncertainties.
In order to be able to decide which of those uncertainties

to address first, they are prioritized based on their threat to

a successful adoption of the system by the user. To sys-
tematically determine an appropriate ranking of uncer-

tainties, established requirements prioritization methods

[26] as well as methods from requirements negotiation and
collaboration engineering can be used [27]. Resulting in an

ordered list of uncertainties to address, a selection can be

made to reduce additional development effort, and thus
costs.

3.2 Identifying remedial antecedents from theory

In the second step, the previously found uncertainties are

being matched to antecedents that are identified as remedial
for the uncertainties by theory. The aim in doing so is to

determine which antecedents that foster trust are related to

the uncertainties and can then be used to systematically
derive functional requirements in the next step. Depending

on the type of trust relationship affected by the uncertainty,

different basic theories for finding antecedents may be
used. In the case of trust relationships between humans—

for example— regarding assumption about the motives and

benevolence of the system developer—an organizational
trust model is applicable [12]. For the more prevalent

relationship between a user and the system, collections of

possible antecedents are presented in [4, 16]. An excerpt
from these collections is given in Table 1. The selection of

an antecedent to counter the uncertainty is then based on

how well the antecedent’s definition in theory matches the
uncertainty description.

Identify remedial
antecedents from
behavioral theory

Identify & prioritize
uncertainties

Deduct
functional

requirements
Derive TSDEs

Ordered list of
uncertainties

Matched list of
antecedents

Functional requirement
specification (parts)

Designs for
TSDEs

Fig. 2 Process for systematically deriving TSDEs

120 Pers Ubiquit Comput (2014) 18:117–128

123

As there may be multiple antecedents applicable for

alleviating a single uncertainty, it can also become neces-

sary to decide which of the antecedents to select for the
coming steps in the development process. Due to the lack

of other research on how to perform this selection, we

advise developers to choose as few antecedents as possi-
ble—since each antecedent will result in at least one

functional requirement to be implemented, thus raising the

development effort. Thus, multiple antecedents are only
used for uncertainties identified as critical. We also suggest

choosing the antecedent that is described as having the

highest influence on trust in theory.

3.3 Deducting functional requirements

During the third step, concrete requirements that can be

used in the system’s specification are deducted from the list

of antecedents, identified in the previous stage, and the
uncertainties the antecedents aim at ameliorating.

Requirements are classified as either functional, that is,

defining system functions, or nonfunctional, that is, defin-
ing system properties like response time or availability [6].

The antecedents identified before can be interpreted as a

subtype of nonfunctional requirements, so-called under-
specified functional requirements [28]. These requirements

allow for a wide range of interpretations of what exactly

they mean concerning the future system’s characteristics,
hence they need to be refined into functional requirements

[28]. To remove any ambiguity during system design, a

number of methods found in the requirements engineering
literature can be applied [29–31].

When deducting functional requirements, it is also

necessary to consider the situational context, for example,
the usage situation, in which the antecedent is supposed to

counteract the initial uncertainty, since the functionality

defined here is used in the same context. A compilation of a

reusable set of antecedent-to-requirement translations—

analogous to software requirement patterns [32] or patterns
of interaction [33]—helps to both reduces the effort needed

in this step of the process and at the same time improves

the quality of the functional requirements derived. It is
important to note that antecedents can also be influenced by

trust-supporting measures that cannot be defined as func-

tional requirements—and hence not result in software
design elements. An excellent example for this is expertise,

the user’s opinion whether the developers have the means
to create a high-quality application, where prior own

experiences, media coverage, gossip, etc., have a great

impact [4]. While established developers like Apple, IBM
and Microsoft already benefit from their position, new-

comers like smaller companies and individuals can try to

improve the perception of benevolence by making their
actions more public, for example, by offering open support

forums, or by using marketing tools like websites or

application reviews by trusted third parties.

3.4 Deriving trust-supporting design elements

The fourth and final step to incorporate behavioral trust

theory into system design is the design of elements that

support trust based on the functional requirements gathered
in the previous step. Like with all design activity in the

system development process, different designs are created

and evaluated before making a decision which design best
matches the requirements and is feasible for realization [6].

As this is a creative process, and creative processes can

only be supported methodologically to a limited extent,
deriving trust-supporting design elements requires prior

experience in system design [6]. While this step is arguably

the most vague in the overall process—like in every system
development process—existing insights and conclusions

from computer science and human–computer interaction

can be incorporated into the design.
In today’s literature on trust in computer science, many

different aspects of trust are described and hence are

available for consideration when deriving TSDEs for a
certain functional requirement. Current research in com-

puter science, or more precisely dependable computing and

information security, presents many potential technical
components that can be used to realize TSDEs, for exam-

ple, measures to ensure information security, establish

access control and improve reliability in networks and
distributed systems [1]. However, those solutions do not

alter the user’s perception unless they are ‘‘advertised,’’ for

example, in the system description or by adding a graphical
element—like a padlock icon—to the user interface.

The final result of our process is a design of concrete

trust-supporting elements for an application that are
noticeable for the user. These design elements can then be

Table 1 Exemplary trust antecedents from [4, 18, 19], antecedents
used for case study in italics

Ability Discreetness Persistence

Accessibility Expertise Personalization

Availability Fairness Predictability

Benevolence Faith Reliability

Communication Familiarity Shared values

Competence Image appeal Shared vision

Concern Integrity Sincerity

Confidentiality Information accuracy Social presence

Consistency Judgment Support

Continuity Motivation Timeliness

Control Motives Understandability

Dependability Openness

Pers Ubiquit Comput (2014) 18:117–128 121

123

implemented and integrated into the application to help

increase the users’ trust in it.

4 Incorporating trust-supporting design elements—the
case of DinnerNow

In order to illustrate the suitability of our proposed process,
show its application in practice and evaluate its results, we

present the case of a ubiquitous application, the context-
aware restaurant recommender system ‘‘DinnerNow.’’ In

the following section, we describe a naı̈vely designed

version of DinnerNow that does not contain explicitly
designed components to improve the user’s trust. Subse-

quently, we describe how our proposed process is applied

to derive trust-supporting design elements and create a
trustworthier version of DinnerNow. For the sake of clarity,

we will presume that all the research found in computer

science applicable to recommender systems—most
importantly policy-based trust and reputation-based trust

models—have already been taken into account, and the

system is hence secured against malicious attempts to
tamper with its functionality. Hence, we focus only on

those aspects of trust related to the end user’s perception of

DinnerNow as a whole.
We will refer to the initial naı̈ve version as DinnerNow

LT (for ‘‘low trust’’) and to the version enhanced with

TSDEs as DinnerNow HT (for ‘‘high trust’’) for easier
understanding.

4.1 The original DinnerNow application

The application’s main goal is to support the decision

making when two or more people spontaneously decide to
have lunch or dinner together in an unfamiliar environ-

ment. DinnerNow allows the user to freely select the filter

criteria for the recommender system. In the naı̈ve
approach—that is, without factoring in the support of

trust—the user may choose whether to use personal pref-

erences like the ethnicity of the cuisine, the restaurant’s
ambiance and previous personal experiences. He may also

want to include ratings from internet-based rating portals

like qype.com or google.com. Additionally, DinnerNow
automatically takes the users current location into account

when generating the recommendation. Since both past

interaction—in form of the user’s or company’s previous
experiences—and profile attribute information—like pre-

ferred type of cuisine—are taken into account, DinnerNow

is an example for a hybrid recommender system combining
collaborative filtering (historical interaction) and content-

based filtering (profile attributes) [34].

After selecting the input criteria and requesting a rec-
ommendation, the user is presented with a screen showing

him the best option based on the input for the current

location. Included into this screen are some details about
the restaurant as well as functions to call the restaurant

(e.g., for a reservation), to open a navigation window to the

restaurant and the option to see the next best choice found
by the recommender system. Should the user be dissatisfied

with the recommendations, he can visit the start screen

again, change the settings and generate a new set of rec-
ommendations. Figure 3 shows the layout for the screen for

changing the search options and the result screen giving a
recommendation.

4.2 Designing a more trustworthy version
of DinnerNow

Using the implementation of DinnerNow LT as a recom-
mender system without explicitly taking trust into account,

we follow the process for systematically deriving TSDEs

laid out above in order to create a more trustworthy version
of DinnerNow. The effect of the TSDEs is then evaluated

in a study where subjects perform tasks using either Din-

nerNow LT or the enhanced DinnerNow HT—without
being told which version they are using—and afterward

answer a questionnaire about their perception of Dinner-

Now’s trustworthiness.

4.2.1 Uncertainties when using DinnerNow LT

The first step in our process is to identify and prioritize the

users’ uncertainties when using the application that lessen

their trust in a system. The ubiquitous application’s
intended use is to provide a restaurant recommendation

based on multiple persons’ preferences, rating from the

Internet and their current location. Using this description
along with the DinnerNow LT prototype as an input, the

uncertainties for the scenario were identified using the

Thinking Aloud Method with three potential users [35, 36].
All three had an extensive knowledge of mobile, pervasive,

ubiquitous technology and come from a technical back-

ground. The process helped to identify the following nine
distinct uncertainties.

Two uncertainties arise when selecting the search

options for the recommender system. Users are uncertain
whether DinnerNow really has access to the information in

the users’ profiles on social networking sites and if the

selection of preferences really has an influence on the
algorithmic determination of a recommendation.

Another two uncertainties are directly associated with

the system’s core feature, the recommendation. Firstly,
users are not certain if DinnerNow finds a recommendation

based solely on the selected search options or if other

factors play a role too, for example, the suspicion that the
application provider manipulates the recommendation due

122 Pers Ubiquit Comput (2014) 18:117–128

123

to kickbacks received from certain restaurant owners.
Hence, they are unsure about the recommendation’s qual-

ity. Another concern is whether the opinion of a broad

group of internet users giving ratings for restaurants will
reflect the user’s taste—this is especially true when using

the application in a foreign country immersed in a different
culture.

Five more uncertainties are associated with the way the

recommendations are presented. The question if the
information displayed is up-to-date is one of them, as the

user has to rely on the restaurant’s still being in business

and on the fact that the restaurant’s quality has not chan-
ged. If a user is not happy with a recommendation, he has

the option to get the next best suggestion by selecting

‘‘Next,’’ or he can completely start over using different
search options. The three test users reported that this was

very annoying, since they felt that they could influence the

interaction process more directly instead of only choosing
‘‘Next’’ when they were not satisfied with the first two

recommendations. If the user has found a recommendation

he is happy with, he has the option to open a navigation
window and see an estimate for the time needed to get to

the restaurant. Uncertainties in this context are whether his

position has been determined correctly, whether the cal-
culated itinerary is the best available and whether the

estimates for the distance and time needed to get to the

restaurant are accurate.
After having identified those nine uncertainties, their

relative importance for the users’ was determined in a

moderated discussion [37], using an outranking-based

approach [26]. The users agreed that the uncertainty about

the quality of the recommendation ranked highest, fol-
lowed by the uncertainty of not knowing the list of rec-

ommendations and the applicability of the opinions voiced

by strangers on Internet portals. These three uncertainties
were chosen to be alleviated; the complete ranked listing of

uncertainties is given in Table 2.

4.2.2 Identifying relevant antecedents for DinnerNow

In the second step of the process, the relevant antecedents

for trust are identified for each of the uncertainties found in

Fig. 3 DinnerNow search
options (stretched) and results
screen without TSDEs

Table 2 Ranked list of uncertainties for DinnerNow, uncertainties
used for case study in italics

Rank Uncertainty

1 Does DinnerNow really use my input to give me a
recommendation?

2 Why are choosing ‘‘Next’’ or restarting with different search
options my only possibilities when I am not satisfied with the
generated recommendation?

3 Do people whose opinion is used by DinnerNow share my
taste?

4 How do my selected options influence the recommendation?

5 Does DinnerNow really have access to my social networking
profile?

6 Are the distance/time estimates correct?

How up-to-date is the restaurant information?

8 Does DinnerNow find the best route to the restaurant?

How good is the localization of my position?

Pers Ubiquit Comput (2014) 18:117–128 123

123

the previous step. As described above, this is done best by

choosing an existing antecedent from trust theory. Com-
pilations of antecedents and their origin—like those found

in [4, 16, 17]—help speed up this process immensely.

Using those compilations, the following antecedents were
identified as relevant for the three top uncertainties when

using DinnerNow.

The uncertainty whether DinnerNow really takes the
user’s input to generate a recommendation is an indicator

of the user want to be able to comprehend how the rec-
ommender systems works internally in order to arrive at the

best restaurant choice. A remedy for this problem is to

improve the antecedent of understandability by informing
the user about how the recommendation was found.

Wondering that they are limited to choosing ‘‘Next’’ or

restarting with different search options when they are not
satisfied with the recommendation indicates that the users

want to interact more directly with DinnerNow in this

specific situation. An antecedent suitable for countering
this uncertainty is control, since the reports of the users

indicate that they want to alter the default recommendation

process. Thus, increasing the control of the users in this
specific situation should counter this uncertainty.

The users’ uncertainty about the applicability of opin-

ions posted on Internet portals shows that they question the
information resources used by the recommender system.

The antecedent associated with this is information accu-

racy. To alleviate this uncertainty, the user should be able
to see how well the information resources match his needs

or even supply own resources (Table 3).

Having identified one antecedent per uncertainty pro-
vides the foundation for initiating concrete measures in

system development to alleviate those uncertainties, start-

ing with deducting additional functional requirements.

4.2.3 Functional requirements for DinnerNow HT

In the third step of our process, the antecedents identified

before are used to deduct functional requirements for

DinnerNow HT. For the three antecedents at hand, this
process is very straightforward, also given that DinnerNow

only covers a small context and has few points of

interaction.

In the previous section, we assumed that the user needs a

better understanding of how the recommendation was
found in order to trust its quality. As the main functionality

of DinnerNow is to create a restaurant recommendation

based on contextual factors, especially the user’s and his
company’s preferences, this process needs to be made

easier to follow. One way of explaining to the layman user

how the system came up with its recommendation is to
inform him about the degree to which his individual pref-

erences were considered when finding the recommenda-
tion. The functional requirement covering this would be

that

R1. To better understand how the recommendation was
generated, the user can view details on how his

preferences are integrated into the recommendation

process when viewing the search results.

To reassure the user that he is in control of the system,

he needs to be able to influence the recommendation pro-
cess if he is not satisfied with the recommendation. One

possibility to achieve this is to give the user access to the

ordered list of recommendations created by DinnerNow.
Instead of being forced to follow the list as it is and click

through it on an item by item basis, the listing of the rec-

ommendations enables the user to quickly check and alter
the result. It has to be possible for him to review the

complete list of recommendations and optionally also make

changes (i.e., re-order the list). The functional requirement
covering this is that

R2. To improve control over DinnerNow, the user has the
option to browse the list of recommendations—

sorted by DinnerNow—and change the sort order

once the recommendation is generated.

To resolve the uncertainty whether the information

accurately matches the user’s need, we found that the user
should be able to integrate trusted sources of information

into the recommender system and see if he is satisfied with

the outcome when viewing the results of his search. While
there are multiple choices for ‘‘trusted sources,’’ we have

chosen to allow the integration of personal friends’ rec-

ommendations as this nicely reflects the social nature of the
recommender system [38]. The ‘‘fit’’ is made explicit by

displaying the information from this trusted source along

with the system’s recommendation. We deducted two
functional requirements for DinnerNow HT from this

R3. To improve information accuracy, the user is able to
integrate his friends’ ratings as an input to generate

the recommendation.

R4. To demonstrate the information accuracy, the user’s
friends’ ratings are made explicit when presenting a

recommendation.

Table 3 Top uncertainties for DinnerNow and their antecedents

Rank Uncertainty Antecedent

1 DinnerNow’s use of input Understandability

2 Being limited to choosing ‘‘Next’’ or
restarting the search process

Control

3 Applicability of opinions from Internet
portals

Information
accuracy

124 Pers Ubiquit Comput (2014) 18:117–128

123

4.2.4 Deriving trust-supporting design elements

During the final step of our process, design elements are
derived from the functional requirements we just deducted.

As we focus on the user’s perception of trustworthiness, we

limit our description to those elements appearing in the
graphical user interface and do not go into detail about the

‘‘invisible’’ changes to the recommendation engine. An

overview over the DinnerNow HT search and result screens
is shown in Fig. 4.

We realized the first requirement by adding another

button labeled ‘‘Fit’’ to the result screen (Fig. 4, TSDE1).
Clicking this button takes the user to another screen that

shows in detail to what degree the recommended restaurant

meets the preferences he chose on the search screen. We
decided to put this information on a different screen that

has to be requested by the user, in order to allow the user to

choose whether he would like to see the details of the
recommendation fit or not.

To fulfill the second requirement, we added another

button labeled ‘‘Self Selection’’ to the result screen (Fig. 4,
TSDE2). By clicking this button, the user can review the

complete list of restaurants as sorted by DinnerNow and

change the order by clicking on the respective column in
the list header. We placed this option to choose an entirely

different restaurant at the bottom of the result screen, as it

is only needed when the user is completely dissatisfied with
the results by DinnerNow.

The third requirement is approached by offering the user

to include ratings by his friends in addition to general
customer ratings from Internet portals when specifying the

search options (Fig. 4, TSDE3). For the current prototype,

we decided to summarize the latter in one option instead of
listing different portals.

Lastly, we exchanged the general ‘‘customer rating’’

information for ratings specific to the user’s friends to
fulfill the fourth requirement (Fig. 4, TSDE4). The label

‘‘Friends’ Ratings’’ makes it obvious to the user that the
information is based on what his friends think rather than

on what conclusion strangers might have drawn.

4.3 Evaluation of DinnerNow

After successfully applying our process to derive TSDEs
from behavioral theories and integrating them into a so-

ciotechnical ubiquitous system, the actual impact of the

TSDEs on potential users needs to be evaluated. This is a
necessary step to show that the use of TSDEs derived by

this process leads to a higher trust in the overall system.

For our study, 166 subjects were divided into two
groups. Each group was assigned one of the two versions of

DinnerNow—without being told whether they were using

the LT or HT version—and asked to complete predefined
tasks and document the results achieved. After having

experienced DinnerNow, subjects were asked to fill out a

questionnaire consisting of 7-point Likert scales capturing

Fig. 4 DinnerNow search
options (stretched) and results
screen with TSDEs highlighted

Pers Ubiquit Comput (2014) 18:117–128 125

123

the items necessary for the evaluation. Of the 166 ques-

tionnaires collected, 143 could be used for further analysis

and 23 had to be discarded due to statistical inconsistencies
in the answers given. DinnerNow without TSDEs (Din-

nerNow LT) was evaluated by 75 subjects; the other 68

subjects evaluated DinnerNow including the TSDEs
(DinnerNow HT).

Table 4 summarizes the change in perception for the

antecedents we aimed to influence with TSDEs—under-
standability, control and information accuracy—as well as

the change in the users’ trust in the DinnerNow recom-

mender system. Answers on the questionnaire were given
using a seven-point scale in the Likert response format

(1 = strongly agree, 7 = strongly disagree).

The results of the evaluation show that the average
assessment of all the variables tested improves. For all

variables, this improvement is significant, except for the

control antecedent. Values for control are extremely high
in both the LT and the HT version of DinnerNow. We

consider two possible explanations: Either the closed

experimental design we have chosen hinders the correct
measurement of the perceived control a user has over the

system or the users overestimated their control over the

prototype. In line with the latter explanation is the obser-
vation how careless many users treat private and personal

information in their daily routine with ‘‘social’’ services

like Facebook or Twitter [39].
Still, the other two antecedents directly addressed in

DinnerNow HT, understandability and information accu-

racy, significantly improved due to the integration of the
TSDEs. Finally, the users’ trust in DinnerNow improves

significantly with the inclusion of the TSDEs.

5 Discussion and conclusion

In this article, we argued for the importance of integrating

insights into behavioral theories into the system develop-
ment process in order to improve the end user’s trust in the

resulting system. To facilitate this integration effort, we

propose a process based on the theoretical foundation of
trust in automation, which covers the trust relationship

between a user and an automated system. The process

consists of four key activities, creating a path from
behavioral trust theory to concrete system design elements.

Thus, the task of improving trust is broken down into

smaller subtasks that can be handled more systematically.
Using our process, we were able to derive four TSDEs

for improving the trustworthiness of our prototypical

implementation of a ubiquitous recommender system. The
evaluation of prototypes that either contain or do not

contain these TSDEs shows that incorporating them
resulted in an increase of both end users’ trust in the

system.

Hence, our research shows that the behavioral theory of
trust in automation can be applied to a system development

setting. It can be integrated well into the software devel-

opment process, bridging the gap between the understand-
ing of trust in computer science, often focused on security

aspects or authentication, and the trust concept in the

behavioral sciences, mostly concerned with human per-
ceptions, assessments and assumptions concerning com-

puter systems. As we were able to replicate the successful

use of our process using one of our other applications—a
mobile multimodal learning game—and two applications of

other research groups—a mobile and context-aware event

organizer and an ubiquitous social conference guide—we
conclude that the overall approach is well suited for adop-

tion and further research. However, there are a couple of

limitations to our research that need to be addressed.
For our evaluation, we chose a laboratory-based

experimental setting, as the complexity of the recom-

mender system barred more sophisticated evaluation set-
tings, for example, a real-life prototype for a city. The

question arises whether our test subjects really behaved

similar to such a real-life evaluation and whether their
perceptions are comparable to what they would have

experienced when using DinnerNow outside of our closed

setup. On the positive side, this type of evaluation helped to
directly influence the course of events during the evalua-

tion. This allowed us to both pretest an earlier version of

similar TSDEs and directly modify the prototype without
our subjects noticing this and hence not tampering with

their perceptions [40].

Also, in our evaluation, the median level of trust rose by
about one third of a point on the Likert scale. However, the

significance of this change is on a low level. While this is

not optimal, further analysis of the data available using a
related theory of technology acceptance found in [16, 41]

indicates that addressing more uncertainties (i.e., include

more TSDEs) than the three we limited our study would
lead to a more significant change in trust.

In the description of our proposed process to derive

TSDEs, instructions on how exactly to find matching
antecedents, to deduct functional requirements from them

Table 4 Changes in user perception and trust for Low and High
Trust prototypes

Variable Mean LT Mean HT t value

Understandability 4.76 5.24 1.946**

Control 5.79 5.80 0.056n.s.

Information accuracy 4.49 5.06 2.640***

Trust 4.81 5.11 1.455*

Level of significance: * p \ 0.1; ** p \ 0.05; *** p \ 0.01; n.s. not
significant

126 Pers Ubiquit Comput (2014) 18:117–128

123

and how to design system features to support trust are still

vague. This problem is well known in computer science, as
both requirements engineering—especially elicitation and

analysis—and system design share this problem of a cre-

ative process that is hard to fit into the framing of a method
[6]. However, unlike existing approaches, where designs

are proposed based on implicit assumptions about uncer-

tainties, antecedents to resolve those and functional
requirements mapping the antecedents to functions, our

approach makes the whole process explicit and the
respective decisions both comprehensible and traceable. As

a result, ineffective TSDEs are not discarded without the

chance of learning from them, and the design process can
be traced back and intermediate decisions be revised.

Both from the limitations of our current work and the vast

body of knowledge concerning the handling of trust in
computer science, a couple of aspects for further research

arise. Three major fields for further research are (1) to

determine the applicability of our process for the develop-
ment of a wider variety of ubiquitous applications, (2)

tracking the effect of TSDEs over a longer usage period (i.e.,

track the effects of the TSDEs after the users have grown
accustomed to the system) and (3) formalizing the behavioral

trust concepts to be able to model and reason about trust

computationally. Additionally, a compilation of TSDEs that
have proven successful in evaluations could serve as the

foundation of a line of trust-related design patterns that

render creating trustworthy systems even simpler. In general,
the aim of future research should be to open up behavioral

insights into a wider audience, for example, by including

them into CASE tools for modeling and analyzing trust
requirements for novel ubiquitous systems.

Acknowledgments The authors thank Hesse’s Ministry of Higher
Education, Research, and the Arts for funding their research within
the VENUS research cluster at the interdisciplinary Research Center
for Information System Design (ITeG) at Kassel University as part of
the research funding program ‘‘LOEWE’’. Parts of this research was
developed in the scope of the project Value4Cloud, funded by the
German Federal Ministry for Economics and Technology (FKZ:
01MD11043A).

References

1. Artz D, Gil Y (2007) A survey of trust in computer science and
the semantic web. Web Semant Sci Serv Agents World Wide
Web 5(2):58–71

2. Stephens RT (2004) A framework for the identification of elec-
tronic commerce design elements that enable trust within the
small hotel industry. Paper presented at the 42nd annual Southeast
Regional Conference (ACM-SE), Huntsville, 02–03 April 2004

3. Gerd tom Markotten D, Kaiser J (2000) Usable security—chal-
lenges and model for e-commerce systems. Wirtschaftsinformatik
6:531–538

4. Lee JD, See KA (2004) Trust in automation: designing for
appropriate reliance. Hum Factors 46(1):50–80

5. Söllner M, Hoffmann A, Hoffmann H, Leimeister JM (2012)
How to use behavioral research insights on trust for HCI system
design. Paper presented at the ACM SIGCHI Conference on
Human Factors in Computing Systems (CHI 2012), Austin,
05–10 May 2012

6. Sommerville I (2007) Software engineering, 8th edn. Addison-
Wesley, Harlow

7. Gefen D, Karahanna E, Straub DW (2003) Trust and TAM in
online shopping: an integrated model. MIS Q 27(1):51–90

8. Viega J, Kohno T, Potter B (2001) Trust (and mistrust) in secure
applications. Commun ACM 44(2):31–36

9. Avizienis A, Laprie J-C, Randell B, Landwehr C (2004) Basic
concepts and taxonomy of dependable and secure computing.
IEEE Trans Dependable Secure Comput 1(1):11–33

10. Sillence E, Briggs P, Fishwick L, Harris P (2004) Trust and
mistrust of online health sites. Paper presented at the ACM
SIGCHI Conference on Human Factors in Computing Systems
(CHI 2004), Vienna, 24–29 April 2004

11. Rousseau DM, Sitkin SB (1998) Not so different at all: a cross
disciplinary view of trust. Acad Manag Rev 23(3):393–404

12. Mayer RC, Davis JH, Schoorman FD (1995) An integrative
model of organizational trust. Acad Manag Rev 20(3):709–734

13. Gambetta D (1990) Can we trust trust? In: Gambetta D (ed)
Trust: making and breaking cooperative relations. Basil Black-
well, Oxford, pp 213–237

14. Vance A, Elie-Dit-Cosaque C, Straub DW (2008) Examining
trust in information technology artifacts: the effects of system
quality and culture. J Manag Inf Syst 24(4):73–100

15. Jarvis CB, Mackenzie SB, Podsakoff PM (2003) A critical review
of construct indicators and measurement model misspecification in
marketing and consumer research. J Consum Res 30(2):199–218

16. Muir BM (1994) Trust in automation: part I. Theoretical issues in
the study of trust and human intervention in automated systems.
Ergonomics 37(11):1905–1922

17. Söllner M, Leimeister JM (2010) 15 years of measurement model
misspecification in trust research? A theory based approach to
solve this problem. In: 10th Academy of Management Annual
Meeting, Rome

18. Shankar V, Urban GL, Sultan F (2002) Online trust: a stakeholder
perspective, concepts, implications, and future directions. J Stra-
teg Inf Syst 11(3–4):325–344

19. Söllner M, Hoffmann A, Hoffmann H, Leimeister JM (2011)
Towards a theory of explanation and prediction for the formation
of trust in IT artifacts. Paper presented at the 10. Annual
Workshop on HCI Research in MIS, Shanghai, 04 December
2011

20. Shirey R (2000) RFC 4949—internet security glossary, version 2.
The Internet Society, Geneva

21. Leimeister JM, Ebner W, Krcmar H (2005) Design, implemen-
tation, and evaluation of trust-supporting components in virtual
communities for patients. J Manag Inf Syst 21(4):101–135

22. Manouchehri S, Söllner M, Leimeister JM (2010) Trust as a
design aspect of context aware systems. In: Beigl M,
Cazorla-Almeida FJ (eds) Proceedings of the 23rd international
conference on architecture of computing systems (ARCS 2010),
Hannover, Germany, pp 183–190

23. Patrick AS, Briggs P, Marsh S (2005) Designing systems that
people will trust. In: Cranor L, Garfinkel S (eds) Security and
usability: designing secure systems that people can use. O’Reilly,
Sebastopol, pp 75–100

24. Sutcliffe A (1998) Scenario-based requirements analysis. Requir
Eng 3(1):48–65

25. Kotonya G, Sommerville I (1996) Requirements engineering with
viewpoints. Softw Eng J 11(1):5–18

26. Herrmann A, Daneva M (2008) Requirements prioritization based
on benefit and cost prediction: an agenda for future research.

Pers Ubiquit Comput (2014) 18:117–128 127

123

Paper presented at the 16th IEEE International Requirements
Engineering Conference, Barcelona, 08–12 September 2008

27. Boehm B, Grünbacher P, Briggs RO (2001) Developing group-
ware for requirements negotiation: lessons learned. IEEE Distrib
Syst Online 18(3):46–55

28. Pohl K (2008) Requirements engineering. dpunkt Verlag,
Heidelberg

29. Chung L, Nixon BA, Yu E, Mylopoulos J (2000) Non-functional
requirements in software engineering. Kluwer, Boston

30. Cleland-Huang J, Settimi R, BenKhadra O, Berezhanskaya E,
Christina S (2005) Goal-centric traceability for managing non-
functional requirements. In: 27th international conference on
software engineering. ACM, St. Louis, pp 362–371

31. Gross D, Yu E (2001) From non-functional requirements to
design through patterns. Requir Eng 6(1):18–36

32. Withall S (2007) Software requirement patterns. Microsoft Press,
Redmond

33. Martin D, Rouncefield M, Sommerville I (2006) Patterns for
dependable design. In: Clarke K, Hardstone G, Rouncefield M,
Sommerville I (eds) Trust in technology: a socio-technical per-
spective. Springer, Doordrecht, pp 147–168

34. Melville P, Sindhwani V (2010) Recommender systems. In:
Sammut C, Webb G (eds) Encyclopedia of machine learning.
Springer, Berlin, pp 829–837

35. Lewis C, Rieman J (1993) Task-centered user interface design: a
practical introduction. University of Colorado, Boulder

36. Nielsen J (1993) Usability engineering. Morgan Kaufmann, San
Francisco

37. Kotonya G, Sommerville I (1998) Requirements engineering:
processes and techniques. Wiley, Chichester

38. Forrester Research (2009) North American Technographics
Media and Marketing Online Survey. Forrester Research, Inc.,
Cambridge

39. Acquisti A, Gross R (2006) Imagined communities: awareness,
information sharing, and privacy on the facebook. In: Danezis G,
Golle P (eds) Privacy enhancing technologies, vol 4258. Lecture
notes in computer science. Springer, Berlin, pp 36–58. doi:
10.1007/11957454_3

40. Salber D, Coutaz J (1993) Applying the Wizard of Oz technique
to the study of multimodal systems. In: Bass L, Gornostaev J,
Unger C (eds) Selected papers from the third international con-
ference on human-computer interaction, vol 753. Lecture notes in
computer science. Springer, Berlin, pp 219–230

41. Muir BM, Moray N (1996) Trust in automation. Part II. Exper-
imental studies of trust and human intervention in a process
control simulation. Ergonomics 39(3):429–460

128 Pers Ubiquit Comput (2014) 18:117–128

123

	Incorporating behavioral trust theory into system development for ubiquitous applications
	Abstract
	Introduction
	The different perspective on trust from behavioral sciences
	Creating trust-supporting design elements for ubiquitous applications
	Identifying and prioritizing uncertainties
	Identifying remedial antecedents from theory
	Deducting functional requirements
	Deriving trust-supporting design elements

	Incorporating trust-supporting design elements---the case of DinnerNow
	The original DinnerNow application
	Designing a more trustworthy version of DinnerNow
	Uncertainties when using DinnerNow LT
	Identifying relevant antecedents for DinnerNow
	Functional requirements for DinnerNow HT
	Deriving trust-supporting design elements

	Evaluation of DinnerNow

	Discussion and conclusion
	Acknowledgments
	References

