
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

Please quote as: Geihs, K.; Leimeister, J. M.; Roßnagel, A. & Schmidt, L. (2012): On
Socio-technical Enablers for Ubiquitous Computing Applications. In: 3rd Workshop on
Enablers for Ubiquitous Computing and Smart Services (EUCASS 2012), at 2012
IEEE/IPSJ 12th International Symposium on Applications and the Internet (SAINT),
Izmir, Turkey.

On Socio-technical Enablers for Ubiquitous Computing Applications

Kurt Geihs, Jan Marco Leimeister, Alexander Roßnagel, Ludger Schmidt
University of Kassel

D-34121 Kassel, Germany
[geihs, leimeister, rossnagel, l.schmidt]@uni-kassel.de

Abstract — The focus of this paper is on context-aware, self-
adaptive ubiquitous computing applications that involve mobile
users. The development of such applications is inherently complex
for two main reasons: From a technical perspective, context
management and adaptation management add complexity to the
application design and implementation. From a socio-technical
perspective, concerns and requirements related to the social
embedding and user acceptance must be addressed in the applica-
tion design and lead to additional complexity, particularly because
sensitive personal data is collected, processed, stored and commu-
nicated by such applications. In this position paper we present an
analysis of the problem space and a solution approach. We have
developed an interdisciplinary methodology that systematically
addresses technical as well as non-technical concerns. Our conclu-
sion is that solving the socio-technical challenges will be a key
enabler for ubiquitous computing.

Keywords: ubiquitous computing, application development,
methodology, socio-technical aspects

I. INTRODUCTION
Ubiquitous computing (UC) is an exciting paradigm shift

that embraces a model in which computing resources and
services blend seamlessly with our daily life environment
and are discovered and bound dynamically at run-time.
Typically, UC applications involve mobile users using
applications that are context-aware and self-adaptive, i.e.
applications self-adapt during run-time to their changing
context in order to maintain or improve their functionality
and quality of service. This creates an enormous potential for
innovative applications that intelligently support the user in
reaction to her current situation.

However, there is a flip side of the coin: the development
of such applications is inherently complex. This is due to two
main reasons. From a technical point of view, not only need
the developers understand the main functionality of the
application and how this can be provided on a mobile device,
but also they have to conceive different application variants,
specify how application variants are linked to the execution
context state, and determine which variant should be activa-
ted under which context conditions. This complexity may
easily appear like an insurmountable barrier to the developer
if appropriate software development and run-time support is
missing. Lately, systematic software engineering support has
been made available for the development of context-aware
and self-adaptive mobile applications. One example for such
a development framework was delivered by the European
project MUSIC (Self-Adapting Applications for Mobile
Users in Ubiquitous Computing Environments) [10].

The second challenge in the development of context-
aware, adaptive, mobile ubiquitous computing applications

arises especially if the objective is not just a technically
sound application but a system that is widely accepted by
users. This challenge is due to the user-centric nature of such
applications, i.e. the socio-technical dimension. It comprises
aspects such as privacy, trust, usability, and legal considera-
tions and has not been addressed systematically in develop-
ment methodologies for UC applications so far. The socio-
technical aspects are concerned about the user as the focal
point of the processing activities. For UC applications
questions arise immediately about the acceptance and social
embedding of the new technology. We claim that UC appli-
cations in particular require careful consideration of user-
related socio-technical aspects. These aspects must be an
integral part of the software development process. Address-
ing and solving these challenges will be a key enabler for
UC. Otherwise there will be a lack of acceptance of such a
user-centric technology.

In this position paper we present an analysis of the prob-
lem space as well as an approach to tackle the challenges.
We report on the results of an ongoing collaborative, inter-
disciplinary research project where we are developing a
development methodology that takes technical as well as
non-technical requirements and concerns into account in a
systematic and integrated fashion.

In Section II we discuss the requirements for a compre-
hensive development methodology for UC systems. Section
III presents our interdisciplinary development approach. In
Section IV we discuss related work. Section V presents
preliminary experiences with the new methodology and
conclusions.

II. REQUIREMENTS
Widespread adoption of a new technology, in particular if

it is a user-centric technology such as context-aware, adap-
tive ubiquitous computing, not only depends on the technical
progress, but also on “soft factors” that determine the user
acceptance. Our goal is to develop a software engineering
method that encompasses the socio-technical aspects of
application systems as first class requirements and facilitates
the development of applications that are socially compatible
by design. We intend to avoid the often encountered situation
that a software product is rejected because it has non-
technical flaws and risks.

Essentially, the utility of a system is determined by both
its functional and non-functional qualities. Both quality
dimensions must be taken into account in the development of
software. However, the software engineering community
agrees that existing software engineering methodologies
focus essentially on “notations and techniques for defining
and providing the functions a software system has to per-
form” [1]. Furthermore, there is a large variety of definitions

and characterizations of the term non-functional requirement
as well as a rather large number of classification schemes
and taxonomies for such requirements. ([1] presents an
excellent overview.) Typical examples for non-functional
concerns in the design of software systems are: performance,
throughput, reliability, robustness, portability, testability,
maintainability, usability, and many more.

In our work we have asked ourselves what non-func-
tional requirements are crucial to the acceptance, i.e. social
embedding, of user-centered context-aware UC applications,
and we decided to concentrate first on three key concerns:
trust, usability, and legal conformance. In order to emphasize
that we focus particularly on software qualities that are
related to the social embedding of the software, we call these
concerns and requirements socio-technical.

Certainly, security and privacy of user data are very im-
portant concerns in UC applications. From our perspective
on UC, we view these elementary concerns as part of the
technical requirements that need to be designed into the
technical solution and cannot be added later on. Therefore, in
the following text we implicitly include security and privacy
in the set of technical requirements of an application. Note
that specific security and privacy mechanisms may be
employed to provide technical support for socio-technical
requirements related to trust or legal conformance.

Thus, our development methodology addresses particu-
larly the following socio-technical concerns and questions:

• Trust:
How can the user build up trust in a system which
monitors the user’s context and adapts automatical-
ly? Does the system really behave as the user wants
it to behave? What kind of technical mechanisms
support trust-building of users? How and where are
trust-supporting components integrated into UC sys-
tems?

• Usability:
How can we make sure that the user can handle and
interact with a system where many components are
hidden in the environment and where many activities
happen automatically? How does the user react to
partially losing control when using an UC applica-
tion?

• Conformance to legal regulations:
How can we include legal considerations into the de-
sign process such that the processing, storing and
sending of application data do not violate existing
law? What kind of service contracts do we use (im-
plicitly or explicitly) if third party service providers
are involved?

Clearly, we could have included (and we will include in
future work) more than exactly these three socio-technical
aspects in our methodology, such as motivational and busi-
ness concerns. However, for practical reasons we decided to
focus first on these three. We believe that the chosen aspects
represent a fairly diverse and broad spectrum of socio-
technical requirements.

Many different software engineering methods are availa-
ble today. There is no “one size fits all” method. Ideally, the
integration of socio-technical aspects into a software engi-

neering method should be agnostic to the specific kind of
software engineering methodology used. Whether a classic
spiral development approach or Scrum is used, should not
influence the degree of social compatibility of the finished
product.

III. DEVELOPMENT APPROACH
Efficient, effective and high quality software develop-

ment is becoming increasingly important in today's world.
However, socio-technical requirements are difficult to assess.
A major part of the development effort is spent for the
requirements analysis and the transformation of socio-
technical requirements into technical artifacts.

Our methodology for the development of UC applica-
tions covers the conventional software development phases
requirements analysis, conceptual design, software design,
implementation, and evaluation. These phases may be
walked through in several iterations. The socio-technical
concerns trust, usability and legal conformance are discussed
and monitored in all phases, but most effort in respect to
dealing with these requirements is spent in the requirements
analysis and conceptual design phases. In the following we
focus specifically on how the socio-technical concerns are
addressed.

It goes almost without saying that the development team
of an UC application must be an interdisciplinary team, i.e.
must consist of requirements engineers and software engi-
neers as well as domain experts for the socio-technical
disciplines.

A. Requirements Analysis
Usability is defined as “the extent to which a product

can be used by specified users to achieve specified goals with
effectiveness, efficiency, and satisfaction in a specified
context of use” [2]. Usability is observable only at runtime. It
is a major concern with interactive systems. For acquiring
usability requirements the usage context is to be analyzed.
Components to be considered are users, tasks, equipment,
and the physical and social environments. By definition, the
user is the most important one. Thus, usability engineering
involves the user either by having the intended users of a
product in mind (i.e. user-centered design) or by making
users actual members of the design team (i.e. participatory
design).

For UC applications we favour participatory design. The
users should be involved from the start in order to validate
potential usage scenarios and user roles. This leads to a set of
usability requirements that become part of the overall appli-
cation requirements.

Research on technology acceptance has shown that trust
is a key determinant of technology adoption [7]. Our notion
of trust is based on the definition of [8] and defined as the
belief “that an agent will help achieve an individual’s goal
in a situation characterized by uncertainty and vulnerabil-
ity”.

This leads to three concerns that we consider most impor-
tant for adaptive UC applications: understandability, i.e.
covering the aspect of how good the user was able to under-
stand how the system works, control, i.e. dealing with the

degree to which the user has the feeling of having the system
under control, and information accuracy, i.e. focusing on the
aspect that the information provided by the system is accu-
rate. Each of these three concerns leads to requirements that
are prioritized according to importance and added to the set
of requirements.

From a legal perspective, we face the difficulty that legal
norms typically are farthest away from obvious mappings
into technical artefacts. They rarely contain concrete provi-
sions for the design of technical systems. Nevertheless,
developers of UC applications must make sure that legal
provisions are not violated.

To acquire technical requirements from legal provisions,
our methodology builds on a method called KORA [9].
KORA specifies a four-step refinement process of how legal
provisions get concretized step-by-step to technical require-
ments.

Towards the end of the requirements analysis phase the
functional application requirements, derived by conventional
requirements engineering, need to be examined together with
the socio-technical requirements related to trust, usability,
and legal conformance. There may be conflicting require-
ments, requirements that incur too much effort or cost, etc.
Thus, the final requirements negotiation is an important step
of the requirements analysis phase which may lead to delet-
ing, adding or reworking some of the requirements. Finally,
all requirements should be expressed in a way that the
developers can understand them.

B. Conceptual design
Based on the derived set of requirements the develop-

ment team jointly builds a consistent conceptual model of the
application. This is performed in six steps.

The first step is to review the requirements that resulted
from the previous phase. This results in a mapping of one or
more requirements onto technical features that the applica-
tion should provide.

In the second step fine-grained use-cases are defined by
requirements and software engineers in order to concretize
the targeted application functionality. The use cases are
reviewed by the experts for trust engineering, law, and
usability rom the perspectives of their disciplines. This leads
to further consolidation and refinement of requirements.

The third step produces the structure of the user interface
by iteratively creating flow charts and a sitemap. Flow charts
visualize the usage of the application, usually centred on a
specific task or function. While a flow chart consists of a
series of screens that collect and display information to the
users, a sitemap illustrates the hierarchy of screens.

Based on the use cases, flow charts, and sitemap the user
interface can be designed in a fourth step. This involves
positioning and fine-tuning the content in each view (in so-
called wireframes) and the development of an overall visual
screen design. Specific system design guidelines of the target
platform must be taken into account. Note that while steps
three and four are performed mainly by software and usabil-
ity engineers, experts from the other two socio-technical
dimensions constantly evaluate the results and may contrib-
ute their opinions and requirements.

In step five trust enhancing interaction elements are
added to the user interface design. For example, a button is
added to the GUI that, when pressed by the user, will show
the current status of the adaptive application or the adaption
history, i.e. where am I and how did I get here?

Finally, in step six the overall application architecture as
well as the data flows are specified in an abstract model by
the software engineers. There is a choice of different model-
ling languages that can be used for this task. Both, architec-
ture and data flows are reviewed by the experts from the
socio-technical disciplines.

C. Software design, implementation, evaluation
So far, we have concentrated primarily on the require-

ments analysis and conceptual design phases because that is
where the socio-technical concerns are explicitly visible.
Later on, in the running software they will be represented in
technical artefacts whose links to the socio-technical re-
quirements may not be so obvious.

The development phases software design and implemen-
tation are carried out mainly by software engineers. The
socio-technical domain experts are on stand-by for further
questions and clarifications. The evaluation phase is a joint
task of all involved disciplines. Software design, implemen-
tation, and the first part of the evaluation will be done in an
iterative process consisting of consecutive cycles. When a
new prototype of the application has been completed, the
experts from the different disciplines in the development
team will evaluate whether the prototype satisfies their
requirements. This iterative process will continue until all
requirements are satisfied by the prototype. Conflicting
requirements may be detected and negotiated once more in
this phase.

When a stable prototype has been achieved and agreed by
the development team, a user evaluation will be conducted,
which constitutes the second part of the evaluation phase.
This requires experiments performed with real users that are
not members of the interdisciplinary design team. The
evaluation may involve simulated user scenarios, interviews,
questionnaires, and usability studies with special devices
such as eye-trackers and other laboratory equipment. Such an
experimental evaluation may reveal weak points in the
application design that require another iteration of the
development process.

IV. RELATED WORK
There are only a few software development methods that

explicitly focus on non-functional properties (though not in
the sense of our socio-technical requirements) and cover the
whole software development process. In the following we
briefly present the three most relevant ones for our research.

In [3] an approach called FRIDA (From RequIrements to
Design using Aspects) is proposed which aims at guiding the
application developer through the phases of the software life
cycle. FRIDA concentrates on both functional and nonfunc-
tional requirements based on aspect-oriented modeling. Each
non-functional requirement is represented by one or more
aspects. Checklists are used to refine non-functional re-
quirements at early-stages of the development life cycle and

to detect conflicting functional and non-functional require-
ments. The main difference to our approach is that FRIDA
concentrates on the classic software-oriented non-functional
requirements, while our focus is on orthogonal socio-
technical considerations.

Reference [4] presents a coherent goal-driven develop-
ment process as well as reusable quality characteristics that
can be applied in software specifications. It is demonstrated
that such quality patterns can be stored in a repository, from
where they can be retrieved for reuse, tailored for different
contexts and integrated with functional descriptions.

The authors of [5] propose an approach that integrates
security concerns into systems engineering throughout the
entire system development process. It builds on the Tropos
methodology [6] that considers not only the system function-
al requirements but also non-functional requirements such as
security, reliability, and performance. Tropos is based on the
idea of building a model of the system that is incrementally
refined and extended from a conceptual level to executable
artefacts, by means of a sequence of transformational steps.

All of the three methodologies focus on non-functional
requirements, but none of them assigns specific priority to
the described user-centered socio-technical requirements.
Certainly, our approach generally benefits from the pub-
lished know-how of the three methodologies but cannot
reuse them due to the very different nature of the addressed
concerns.

V. EXPERIENCES AND CONCLUSIONS
In order to evaluate our interdisciplinary development

methodology for UC applications, we have performed three
separate application development projects whereby each
application is developed in two versions: The first version
was developed without using the described methodology.
Thereafter, the application is re-developed from scratch by
applying the methodology. Each of the two versions is
evaluated separately in extensive user experiments.

The three applications cover a rather diverse spectrum of
UC scenarios: (a) a mobile self-adaptive social networking
application that reacts to user context changes and can
incorporate dynamically discovered services in the user
environment, (b) an intelligent home application that sup-
ports elderly people who live alone in a private household,
and (c) an RFID-based monitoring application that is able to
track and record social contacts of persons, e.g. during a
conference or in an office environment. Obviously, these
scenarios raise plenty of challenging socio-technical con-
cerns that need to be addressed in the development process.

The development of the second versions of the applica-
tions is work in progress. The prototypes are completed but
still under evaluation. However, already we can see clearly
that the new methodological approach involving experts
from different disciplines, changes fundamentally the set of
requirements as well as the functionality and the look-and-
feel of the final application. Before developing the second
versions with our new methodological approach, we did
expect some substantial changes due to the involvement of
the socio-technical disciplines. However, we did not expect
that the assumption of an open, ubiquitous computing

environment would introduce so many new non-technical
requirements and concerns that computer scientists and soft-
ware engineers alone would not have thought of.

A second immediate observation is that application de-
velopment based on the new methodology takes roughly
twice as long due to many review circles and resulting
development iterations. Obviously, this observation has to be
taken with caution because working with new methodology
for the first time will always incur more overhead due to
learning effort and discussions about the approach itself. A
more substantial and detailed evaluation of the efficiency and
effectiveness of our participatory design approach is ongoing
work and will be the subject of a forthcoming report.

As part of our work general (unsolved) questions with
software engineering methodologies have surfaced again:
How does one measure the utility of a methodology? What
are appropriate metrics? What kind of quality sensors do
such metrics require? Probably only experience with many
development projects over a large time span and a large
spectrum of application scenarios will provide the answers to
questions on how well a methodology works and how it
compares to other approaches.

One conclusion is clear already: User-centered, context-
aware, self-adaptive UC applications for sure require an
interdisciplinary development methodology as an enabler for
socially embedded and widely accepted solutions.

ACKNOWLEDGMENT
We thank all members of the VENUS project at the Uni-

versity of Kassel for their contributions.

REFERENCES
[1] L. Chung and J. C. S. Prado Leite, On Non-Functional Requirements

in Software Engineering, A.T. Borgida et al. (Eds.): Mylopoulos
Festschrift, Springer LNCS 5600, pp. 363---379, 2009.

[2] ISO, Dialogue principles, ISO Standard 9241-110
[3] S. Bertagnolli and M. Lisboa. The FRIDA model. In Analysis of

Aspect-Oriented Software (ECOOP 2003), July 2003.
[4] J. C. S. Prado Leite, Y. Yu, L. Liu, E. S.K. Yu, and J. Mylopoulos.

Quality-Based Software Reuse. Proc. 17th International Conference
on Advanced Information Systems Engineering CAiSE ‘05, Springer
LNCS, vol. 3520, pp. 535–550, 2005.

[5] H. Mouratidis, P. Giorgini, and G. Manson. Integrating Security and
Systems Engineering: Towards the Modelling of Secure Information
Systems. Proc. 15th Int. Conf. on Advanced Information Systems
Engineering, CAiSE ‘03, Springer LNCS, vol. 2681, pp. 63-78, 2003.

[6] J. Castro, M. Kolp, and J. Mylopoulos. A Requirements-Driven
Development Methodology. Proc. of 13th Int. Conf. on Advanced
Information Systems Engineering, CAiSE ’01, pp. 108–123, 2001.

[7] D. Gefen, E. Karahanna, and D. W. Straub. Trust and TAM in Online
Shopping: An Integrated Model. MIS Quarterly, 27 (1), 51-90, 2003.

[8] J. D. Lee and K. A. See, Trust in Automation: Designing for
Appropriate Reliance. Human Factors, 46 (1), 50-80, 2004.

[9] V. Hammer, U. Podlesch, and A. Roßnagel. KORA – Eine Methode
zur Konkretisierung rechtlicher Anforderungen zu technischen
Gestaltungsvorschlägen für Informations- und Kommunikations-
systeme. Infotech/I+ G, 21–24, 1993. (In German)

[10] J. Floch, C. Frà, R. Fricke, K. Geihs, J. Lorenzo, et. al.: Playing
MUSIC - Building context-aware and self-adaptive mobile
applications, Software Practice & Experience, John Wiley & Sons,
http://dx.doi.org/10.1002/spe.2116, April 2012.

