

Please quote as: Hoffmann, H. & Leimeister, J. M. (2011): Evaluating Application
Prototypes in the Automobile. In: IEEE Pervasive Computing, Ausgabe/Number: 3,
Vol. 10, Erscheinungsjahr/Year: 2011. Seiten/Pages: 43-51.

Published by the IEEE CS n 1536-1268/11/$26.00 © 2011 IEEE 	 PERVASIVE computing� 43

A u t o m o t i v e P e r v a s i v e C o m p u t i n g

Evaluating Application
Prototypes in the
Automobile

P ervasive automotive applications are
becoming a key driver for innovation
among car manufacturers and their
suppliers. Customers want applica-
tions they know from their desk-

tops and mobile devices also available in their
cars.1 For these pervasive applications to suc-
ceed, they must interact with drivers intuitively
to avoid creating a distraction. Peter Mambrey
and Volkmar Pipek have shown that differences
in knowledge and perspective between users
and developers aggravate this situation.2 Users
often don’t know the possibilities arising from

novel technologies and only
become aware of an applica-
tion once it’s available. At that
point, developers, who aren’t
fully aware of the application’s
future usage context, have

already terminated their (traditional) working
process. User-centered design can narrow these
differences.

To obtain reasonable results from evalua-
tions, developers must choose the kind of pro-
totype and the evaluation setting consciously
and wisely. Prototypes range from low-fidelity
paper prototypes to fully functional high-
fidelity systems. For complex systems, such as
pervasive car applications, low-fidelity proto-
types make it harder to distinguish application
from prototype characteristics; hence, high-
fidelity prototypes are preferred.3 Evaluation

settings range from laboratories to real-life
situations, depending on what’s being evalu-
ated.4 Most automotive software development
projects use computer simulations1 or driving
simulators for user evaluations. However, driv-
ing simulators affect test subjects’ perceptions
and thus bias evaluation results.5 As Andreas
Riener noted, driving errors made using a simu-
lator aren’t hazardous, so subjects concentrate
less on driving than when driving a real car, and
because there are no consequences for breaking
traffic laws, subjects don’t follow the rules as
strictly as when driving in reality.5 In addition,
the simulation’s surreal characteristics—it lacks
noises and vibrations, uses unrealistic scenery,
and so on—negatively impact the validity of the
subjects’ measured behavior in the car.6

Although simulations are suitable in early
studies, they leave a gap in the human-centered
design cycle. Simulations cannot cover users’
perceptions of using the application in a real
car. To close this gap, developers should evalu-
ate applications that have been found safe for
use during computer simulations or in driving
simulators, while driving a car either on a test
track or in real traffic. However, a car’s com-
plex technical infrastructure and the pervasive
nature of the applications complicate the inte-
gration of prototypes into an automobile:

•	 In today’s cars, functions are distributed over
multiple electronic control units (ECUs); for

Automotive application developers often rely on computer simulations or
driving simulators for testing their applications. A prototyping platform
based on user-centered design principles allows early evaluations to take
place in drivable cars.

Holger Hoffmann
and Jan Marco Leimeister
Kassel University

PC-10-03-Hoffman.indd 43 6/24/11 11:04 AM

44	 PERVASIVE computing� www.computer.org/pervasive

Automotive Pervasive Computing

example, the indicator lights use up
to eight ECUs.6

•	 Even for the automaker, ECUs are
often a “black box” because differ-
ent suppliers build them to meet an
interface specification.7

•	Multiple hardware and software
revisions of one ECU exist for any
given car model, each conforming to
the interface definition, but working
differently.7

Consequently, integrating a working
prototype into the embedded infra-
structure is time-consuming and ex-
pensive, and it depends on expertise
often found only with ECU domain
experts. This reduces the possibilities
for other developers to assess user re-
quirements, weigh design options, and
conduct user evaluations. Prototyping
tools can help solve this dilemma by
helping speed up design cycles, saving
time and money. This makes it easier
for other developers to create new ap-
plications and facilitate the gather-
ing of user feedback throughout the
process.8

A Rapid Prototyping
Environment for
Automotive Applications
The highly integrated modular embed-
ded prototyping platform (HIMEPP)
closes the gap in the user-centered de-
sign of pervasive applications for the
automobile by allowing user evalua-
tions in a real environment. HIMEPP’s
design goals follow Scott Klemmer and
his colleagues’ argument9 that effective
prototyping tools

•	must be easy to learn,
•	 require little programming expertise,

and
•	 support the rapid creation, evalua-

tion, and modification of prototypes.

(See the “Evaluation of HIMEPP as a
Prototyping Environment” sidebar.)

HIMEPP includes a hardware plat-
form installed in a stock car and a
software framework for development
support. The hardware integration lets
developers implement their prototypes
on a standard computer, which is less
complex and has lower development

costs than embedded prototypes. The
software framework supports proto-
type implementations by providing
scaffolding and preassembled software
components. Both reduce development
time and require less domain expertise,
opening evaluations to developers with
limited programming skills. HIMEPP
lets developers run multiple iterations
of a prototype, a core concern voiced by
Björn Hartmann and his colleagues.10

Hardware Platform
and Automobile Interfaces
HIMEPP’s hardware platform is based
on a standard Intel-compatible com-
puter designed for the automotive en-
vironment. It differs from a standard
computer only in its dimensions—
that is, it easily fits into a car’s glove
compartment—and the extended op-
erational temperature range.

Developing applications that ap-
pear to run natively in the car requires
users to interact with the prototype
through the user interfaces found in
the car. In the Audi A4, we used as a
prototyping environment; the visual

T o evaluate whether the highly integrated modular embed-

ded prototyping platform (HIMEPP) meets Scott Klemmer

and his colleagues’ requirements for a prototyping environment,1

we collected feedback from 14 developers who used it to create

at least one prototype. All developers had backgrounds in com-

puter science, information systems, or engineering.

We introduced the developers to HIMEPP in small groups dur-

ing three-hour workshops. After the developers had used all

the prototypes, they completed posttask questionnaires. Using

questions derived from Viswanath Venkatesh and his colleagues’

Unified Theory of Acceptance and Use of Technology,2 we asked

developers about their expectancy and experience in terms of

performance and effort as well as social influence and facilitating

conditions when using HIMEPP and whether they intended to

continue using it.

The feedback we collected shows that HIMEPP meets all

three of the Klemmer requirements. First, by providing a Java-

based software framework, developers can easily learn to work

with HIMEPP. Ten developers found learning and working with

HIMEPP easy. Second, preassembled base components cover

all interfaces to the user and car. Using them requires little

programming experience. Twelve developers stated that they

had all the resources necessary and enough knowledge to use

HIMEPP. Plus, HIMEPP’s highly modular architecture and

hardware infrastructure let them easily add and modify com-

ponents. Using off-the-shelf hardware and software in the car’s

native environment, HIMEPP supports the rapid creation, eval-

uation, and modification of prototypes. Thirteen developers

responded that creating prototypes using HIMEPP was more

rapid than the tools and techniques they had before. Although

six developers mentioned compatibility problems with other

systems, all but one planned to continue using HIMEPP in the

coming year.

References

	 1.	 S.R. Klemmer et al., “Suede: A Wizard of Oz Prototyping Tool for
Speech User Interfaces,” Proc. 13th Ann. ACM Symp. User Interface
Software and Technology, ACM Press, 2000, pp. 1–10.

	 2.	 V. Venkatesh et al., “User Acceptance of Information Technology:
Toward a Unified View,” MIS Quarterly, vol. 27, no. 3, 2003, pp. 425–478.

Evaluation of HIMEPP as a Prototyping Environment

PC-10-03-Hoffman.indd 44 6/24/11 11:04 AM

JULY–SEPTEMBER 2011	 PERVASIVE computing� 45

output uses the display in the middle of
the dashboard and sound output uses
the car’s speaker system. Whereas the
prototype’s sound output is reached us-
ing the car stereo’s auxiliary input line,
graphical output requires a more com-
plex setup. To convey a natural feeling
during evaluations, regular in-car ap-
plications must remain available. We
achieve this using a Y-switch that lets
users select either the head unit (for reg-
ular applications) or our system (for the
prototype) for the visual output source.
To further enhance the illusion of the
prototype as an integrated standard ap-
plication, our setup lets users switch the
video input through the Audi user in-
terface’s standard application selection
method, the haptic controller.

Other interfaces available to develop-
ers include the buttons, switches, and
levers on the dashboard and steering
wheel. Because these components are
connected to the car’s central controller-
area network (CAN) bus, we added
a CAN interface card to the proto-
typing platform. We also included a
microphone for speech recognition to
allow speech-controlled pervasive ap-
plications. Because car microphones
don’t fit the standard computer in-
put, we integrated an off-the-shelf
microphone hidden near the center
rearview mirror.

To allow developers to create high-
fidelity prototypes of mobile applica-
tions, we also added a GPS receiver
for location-aware applications (such
as point-of-interest routing); a Gen-
eral Packet Radio Service/Universal
Mobile Telecommunications System
(GPRS/UMTS) modem and a Wi-Fi
network card for mobile data transfer;
and a cable-bound network card to link
with other computers in the car—for
example, to remotely control or debug
prototypes.

Software Architecture
Whereas the hardware platform’s
goal is integrating standard hardware
into the car, the software platform
allows developers to integrate their

applications into the car’s usage con-
cept. To this end, the platform provides
access to human-car interfaces and car
data interfaces.

The user-centered approach focuses
on iterative implementation of func-
tionality while repeatedly evaluat-
ing the design and implementation.11
Hence, our software platform needs
to make software functions easily ex-
changeable so developers can evaluate
alternatives and make design revisions.
Furthermore, because automotive soft-
ware is developed outside the automo-
bile, developers must be able to test the
system outside a car, simulating user
interfaces and car-related data.

Using a component-oriented ap-
proach for the software platform’s ar-
chitecture satisfies both requirements.12
Figure 1 shows the design elements of
a component-oriented software archi-
tecture. The figure also illustrates the
corresponding HIMEPP elements and
pre-assembled base components added
for reuse in projects.

Platform Design Elements
Volker Gruhn and Andreas Thiel de-
scribe the component model with a
matching framework and middleware
as the core of component-oriented

architectures.13 Supplements are de-
velopment tools that ease the creation
of components and component-based
prototypes.

Components are the architecture’s
name-giving elements. In Clemens
Szyperski’s frequently used definition,
components are reusable, encapsulated
logical units that implement certain
functionality made available through
public interfaces.12 A component-
based application uses the public inter-
faces of one or more components to cre-
ate a more complex application.

The component model defines the
syntactic and semantic standard for
implementing a component-based ap-
plication, covering interface defini-
tions, naming conventions, and in-
tercomponent connectivity.12 The
components’ runtime environment,
the middleware, is closely related to the
component model. Because HIMEPP
simplifies rapid prototyping of perva-
sive applications that users can evalu-
ate, the component model must be cho-
sen accordingly. The OSGi component
model, adding a module system and
service platform to the widely used
Java programming language, is a suit-
able foundation for an easy-to-handle
prototyping platform. Programming in

Figure 1. Links between elements of a component-oriented architecture (adapted
from Volker Gruhn and Andreas Thiel’s work13) show how the architecture’s different
design elements are combined to create a modular prototyping environment.

Component model
(OSGi)

Framework
(HIMEPP core)

Components

Middleware
(Equinox OSGi)

Component-based
application

foundation

HIMEPP
base components

building
block for

building
block for

matched

Development tools
(Eclipse IDE, and so on)

used for
generating

used for
generating

executed
in

pre-assembled

PC-10-03-Hoffman.indd 45 6/24/11 11:04 AM

46	 PERVASIVE computing� www.computer.org/pervasive

Automotive Pervasive Computing

Java improves the developers’ learn-
ing curve, and many development tools
are available for developing Java ap-
plications. For example, the Eclipse
integrated development environment
(IDE) is based on OSGi technology
and thus includes the tools necessary
for build and test cycles on the devel-
oper’s machine.

The prototyping platform’s frame-
work defines domain-specific princi-
ples and provides rudimentary func-
tionality for component developers.12 It
thus eases the development process by
defining coding principles to ensure
the compatibility of different devel-
opers’ components within the frame-
work. The HIMEPP core framework
defines several coding principles
and offers supporting functions.
HIMEPP’s most important frame-
work features are functions for event-
based intercomponent communication
(for loose coupling), dynamic starting
and stopping of components (to save
the embedded hardware’s resources),
enhanced logging functionality (for
system testing and evaluation), and

interfaces to third-party components.
Figure 2 gives a system overview.

We included a wizard for setting up
new projects to enhance the Eclipse
IDE’s functionality. Using the wizard,
developers can select base components
for their prototype and determine
events the prototype should react to.
The wizard automatically generates
the necessary structure for an OSGi-
compatible component. It sets up the
component scaffolding, providing
the developer with method stubs for the
component’s application logic.

HIMEPP’s component-oriented de-
sign contributes to the fulfillment of
the two major requirements we’ve de-
scribed. Using the HIMEPP framework,
the OSGi middleware, and the Eclipse
IDE, software functions can be ex-
changed effortlessly. The eventing mech-
anism lets developers test the application
outside of the car (for example, by inject-
ing simulated events into the stream).

HIMEPP Base Components
HIMEPP extends the design elements
derived from Gruhn and Thiel by

offering preassembled components of
frequently used functions (for example,
access to user interfaces).13 Providing
such base components reduces develop-
ment time and prevents implementation
errors. Additionally, having base com-
ponents that cover user interfaces in the
car ensures a real-life user experience;
novel applications have the look and
feel of existing applications. Following
the separation of concerns design prin-
ciple, HIMEPP separates data input
from an external source into the direct
interaction with external hardware or
software, optional semantic data inter-
pretation, and the command execution
in the application (see the components
in the top right of Figure 2). Hence,
minimal effort is required to add new
hardware to the prototyping platform
and to evaluate multiple interaction
concepts by exchanging the semantic
interpretation component.

HIMEPP base components are
grouped into components that are
part of the in-car prototype and com-
ponents that developers can use when
implementing and testing the applica-
tion at their desks. Prototype compo-
nents support application development
by providing reusable functions. We
identified the components most use-
ful to developers by analyzing the user
interface elements and data sources of
existing applications on the stock Audi
Infotainment Platform as well as ap-
plications in current research projects.
Figure 3 shows some relevant elements
found during that analysis.

Components used at the developer’s
desk represent and replace the in-car
components, letting developers interact
with the system as if it were installed
in the car. The separation of concerns
principle and the HIMEPP eventing
mechanism (see Figure 2) make this ex-
change possible. The developer equiv-
alent of a user interface component is
a new HIMEPP service component
that sends the same events and has
the same methods as the user interface
component it represents. The compo-
nents interpreting user input (either the

Figure 2. Communication and component interplay within the highly integrated
modular embedded prototyping platform (HIMEPP). Based on the broadly used
OSGi service platform, the HIMEPP framework and components enable domain-
specific development and allow for integrating prototypes using standard hard-
and software into the car’s infrastructure.

HIMEPP core
(framework)

LogServiceEventAdminDeclarative
servicesOSGi service platform

(component model and middleware)

Third-party
components

HIMEPP semantic
component

HIMEPP
client

component
(application)

HIMEPP
service

component

Direct communication

Indirect communication

HIMEPP element

Third-party software

External
hardware/
software

PC-10-03-Hoffman.indd 46 6/24/11 11:04 AM

JULY–SEPTEMBER 2011	 PERVASIVE computing� 47

corresponding semantic or the applica-
tion itself) are left unaltered; the simu-
lated events appear to come from the
regular component in the car. Thus, de-
velopers can quickly change the inter-
action with the pervasive applications
by implementing different versions of
the same semantic interpretation com-
ponents. Hence, they can evaluate dif-
ferent interaction concepts of pervasive
applications in the car without chang-
ing the application logic.

Case Study:
Implementation and Evaluation
of a Virtual Co-Driver
We present a case study in which an-
other researcher in our department
used HIMEPP to create a prototype for
evaluating a novel interaction concept.
The target virtual co-driver application
consists of an avatar and artificial intel-
ligence to help drivers cope with the in-
creasing number of applications in cars.

Functionality
A virtual co-driver system (Avicos)
gives the driver information about op-
erating the car and lets the driver con-
trol a set of functions using natural
speech.14 Avicos offers two modes.

In handbook mode, Avicos answers
questions about the car’s functions and
lets the driver change entertainment and
comfort settings using speech input.
Avicos responds using text-to-speech
synthesis to output handbook texts.
To improve human-car interaction,
a female avatar on the dashboard dis-
play indicates the device usage.

In touch-and-tell mode, Avicos lets
drivers learn about unfamiliar devices.
After activating this mode, the driver
uses the device (that is, the button,
knob, or lever) and receives the corre-
sponding information about the device
as in handbook mode.

Implementation
The Avicos prototype has three sub-
systems: the input system, the reaction
determination system, and the output
system. The input and output systems

use HIMEPP base components. The
avatar’s rendering engine was added
as a component. The reaction deter-
mination system holds the application
logic and thus was implemented from
scratch.

The first step in development using
HIMEPP is adding a new project us-
ing the HIMEPP wizard in Eclipse.
On the first screen, the wizard col-
lects all data necessary for setting up
component scaffolding—for example,
its name and starting procedure, and
whether it provides a service to other
components or triggers events. Devel-
opers can select services provided by
other components (that is, base and
self-developed components) on their
machine to import and subscribe to

events from those components. For
Avicos, the base components imported
were audio output, GPS locations (for
evaluation purposes), speech input and
output, and the new avatar component.
Additionally, the Avicos prototype
component subscribes to events that
inform it about finished audio output
and speech synthesis, new user input
via a haptic device or speech recogni-
tion, and new data from the CAN bus
or GPS device (left window in Figure 4).
On the wizard’s second screen, develop-
ers can add Java and operating-system-
specific libraries referenced in their
code, as well as resources to be included
in the component. Avicos imports the
Chatterbean library, a Java version of
the Alice conversational agent, as well

Figure 3. By analyzing which user interface elements are used in existing end-user
and research applications, the base components needed in HIMEPP to support
development of such applications are derived.

MACS MyNews

MACS MyEntertainment

MACS MyOffice

Audi ParkingInfo

Audi SoccerTicker

Status information HybridCar

3D navigation-simulator

WAP browser

Local search

MMI
display

Combi-
display

Audio
data

Speech
synthesis

Front
controller

Speech
commands

Radio

Media

TV

Addressbook

Telephone

Navigation

Traffic information

Car settings

Setup

InputOutput

User interface elements

Au
di

 In
fo

ta
in

m
en

t/M
M

I a
pp

lic
at

io
ns

Ap
pl

ic
at

io
ns

 in
 re

se
ar

ch
 p

ro
je

ct
s

Application doesn't use interfaceApplication uses interface

Other
haptic*

* For example, buttons on steering
 wheel/dashboard

PC-10-03-Hoffman.indd 47 6/24/11 11:04 AM

48	 PERVASIVE computing� www.computer.org/pervasive

Automotive Pervasive Computing

as the license file needed by the third-
party application rendering the avatar
and a logo to display at startup (see the
right window in Figure 4).

After the developer finishes the wiz-
ard, HIMEPP presents the project setup
in the Eclipse environment. Method
stubs for the component’s application
logic are available, the component defi-
nitions needed for OSGi are set up au-
tomatically, and services selected in the
wizard are set up for use. Additionally,
a run configuration is created for the
OSGi runtime, specifying the compo-
nents to use and their launch sequence
for the overall application.

Avicos works by gathering user input
from CAN bus, haptic interface, and
speech recognition. It then passes the
input to the (external) conversational
agent that interprets it and determines a
response, which is presented to the user
using the avatar component as well as
speech output.

During the implementation and test-
ing phase, developers can launch the
prototype on their own machines by
starting a new OSGi runtime, using the
run configuration initially created by
the HIMEPP wizard. The last devel-
opment step is deploying the proto-
type in the car. Selecting the newly
created run configuration in the de-
ployment wizard wirelessly copies
the entire prototype to the hardware
platform in the car. The Avicos imple-
mentation used the developer base com-
ponents for testing the functionality of
the virtual co-driver at the developer’s
desk— for example, by simulating cer-
tain speech input or bus signals. When
transferred to the car, the Avicos appli-
cation reacted as it did on the develop-
ment machine.

Evaluation
Sixty-seven subjects evaluated Avi-
cos, which was installed in a modified

stock car. The developer videotaped
the evaluation, recording the driving
situation as well as the subjects’ behav-
ior, as illustrated in Figure 5. During
evaluation, subjects used the system to
complete simple tasks, either while
parking or driving in real traffic. A de-
veloper was present during all the eval-
uations to oversee the process, answer
questions, and react in case of a user or
system error.

From the video analysis and before
and after questionnaires, the proto-
type’s benefits were identified by com-
paring the virtual co-driver to the user
handbook, including Avicos’s perceived
ease of use and perceived usefulness in
real-world scenarios. The prototyping
platform proved to be sophisticated
enough to run the system without any
developer interaction.

T he possibilities introduced
by HIMEPP must be tem-
pered with three shortcom-
ings. First, HIMEPP doesn’t

prevent developers from evaluating
applications in the car that might be
dangerous to use. Intended usage fo-
cuses on evaluating applications that
were previously found safe in simu-
lations or a driving simulator. How-
ever, it seems necessary to find a way
to disable developers from creating
unsafe application logic while up-
holding HIMEPP’s potential. Second,
HIMEPP’s potential to create proto-
types using hardware is limited. Al-
though the hardware platform lets us
integrate new user interfaces (we evalu-
ated the use of a Nintendo Wii Nun-
chuk controller in the car) and exter-
nal hardware (for example, a second
GPS device), changes to existing inter-
faces, such as the steering wheel unit,
are still expensive to realize. Third,
we haven’t been able to implement a
Y-switch to send CAN messages
either to the car’s ECUs or HIMEPP as
we did for switching the display out-
put. Although HIMEPP ignores mes-
sages not intended for the prototype,

Figure 4. Setting up the Avicos prototype with the HIMEPP wizard. In the first
window (left side), the developer enters the project name and chooses services to
import and events to subscribe to. In the next window (right side), the developer
selects libraries and other resources.

PC-10-03-Hoffman.indd 48 6/24/11 11:04 AM

JULY–SEPTEMBER 2011	 PERVASIVE computing� 49

the ECUs receive and process all mes-
sages. Currently, a workaround dis-
ables functions in the ECUs to prevent
side effects when a HIMEPP proto-
type reacts to a CAN message. How-
ever, this leaves the functions also
unavailable during the car’s regular
operation.

Further research is required in many
areas. Foremost, our approach to de-
velop prototypes in the automobile cen-
ters on enabling the developer to pres-
ent a working application in the car.
This is a crucial first step, but exten-
sive data gathering during evaluations
and subsequent analyses of this data is
required for developers to understand
users’ needs and reactions to proto-
types. Although HIMEPP supports
data gathering from component events,
the means for combining and analyz-
ing that data with developer-recorded
data (such as evaluation videos)10 are
missing and need exploration. More-
over, HIMEPP could let users design
prototypes using predefined applica-
tion blocks representing user interface
or data elements. The platform should
be expanded to allow this visual design
of applications by “dragging and drop-
ping” prebuilt blocks, enabling users to
create custom prototypes.

References
	 1.	 D.D. Salvucci, “Rapid Prototyping and

Evaluation of In-Vehicle Interfaces,”
ACM Trans. Computer-Human Interac-
tion, vol. 16, no. 2, 2009, pp. 1–33.

	 2.	 P. Mambrey and V. Pipek, “Enhanc-
ing Participatory Design by Multiple
Communication Channels,” Human-
Computer Interaction: Communication,
Cooperation, and Application Design,
vol. 2, H.-J. Bullinger and J. Ziegler, eds.,
Lawrence Earlbaum Associates, 1999,
pp. 387–391.

	 3.	 Y.-K. Lim et al., “Comparative Analysis
of High- and Low-Fidelity Prototypes
for More Valid Usability Evaluations of
Mobile Devices,” Proc. 4th Nordic Conf.
Human–Computer Interaction, ACM
Press, 2006, pp. 291–300.

	 4.	 H. Sharp, Y. Rogers, and J. Preece, Inter-
action Design, 2nd ed., John Wiley &
Sons, 2007.

	 5.	 A. Riener, “Simulating On-the-Road
Behavior Using Driving Simulators,”
Proc. 3rd Int ’l Conf. Advances in
Computer–Human Interactions, R. Jarvis
and C. Dini, eds., IEEE CS Press, 2010,
pp. 25–31.

	 6.	 A. Pretschner et al., “Software Engineer-
ing for Automotive Systems—A Road-
map,” Proc. 2007 Future of Software

Eng. (FOSE 07), IEEE CS Press, 2007,
pp. 55–71.

	 7.	 M. Broy et al., “Engineering Automotive
Software,” Proc. IEEE, vol. 95, 2007,
pp. 356–373.

	 8.	 Y. Li, J.I. Hong, and J.A. Landay,
“Topiary: A Tool for Prototyping
Location-Enhanced Applications,” Proc.

Figure 5. Multiplexed video stills from a user evaluation on the road, documenting
the traffic situation on the road ahead (a) and behind (b) as well as user interaction
by filming the position of the driver’s hands and the content on the screen (c) and
the driver’s gaze (d). (Face blurred to protect the subject’s privacy.)

(a) (b)

(d)(c)

the Authors
Holger Hoffmann is a postdoctoral researcher at the Research Group for
Information Systems at Kassel University. He works with research groups on
automotive software and services, ubiquitous and mobile computing, and
open innovation and runs publicly funded research projects. His teaching
and research areas include automotive applications, ubiquitous and mobile
computing, collaboration engineering, and project management. Contact him
at holger.hoffmann@uni-kassel.de.

Jan Marco Leimeister is a full professor of information systems and is the
Chair for Information Systems at Kassel University. He runs research groups
on virtual communities, e-health, and ubiquitous and mobile computing and
manages several publicly funded research projects. His teaching and research
areas include IT innovation management, service science, ubiquitous and
mobile computing, collaboration engineering, e-health, online communities,
and IT management. Contact him at leimeister@uni-kassel.de.

PC-10-03-Hoffman.indd 49 6/24/11 11:04 AM

50	 PERVASIVE computing� www.computer.org/pervasive

Automotive Pervasive Computing

17th Ann. ACM Symp. User Interface
Software and Technology, ACM Press,
2004, pp. 217–226.

	 9.	 S.R. Klemmer et al., “Suede: A Wizard
of Oz Prototyping Tool for Speech User
Interfaces,” Proc. 13th Ann. ACM Symp.
User Interface Software and Technology,
ACM Press, 2000, pp. 1–10.

	10.	 B. Hartmann et al., “Reflective Physi-
cal Prototyping Through Integrated
Design, Test, and Analysis,” Proc. 19th
Ann. ACM Symp. User Interface Soft-
ware and Technology, ACM Press, 2006,
pp. 299–308.

	11.	 Int’l Organization for Standardization,
ISO 13407 Human-Centred Design
Processes for Interactive Systems, ISO,
2000.

	12.	C. Szyperski, Component Software—
Beyond Object-Oriented Programming,
2nd ed., ACM Press, 2002.

	13.	 V. Gruhn and A. Thiel, Komponenten-
modelle, Addison-Wesley, 2000.

	14.	 V.A. Nicolescu, Gestaltung Avatar-
basierter Natürlichsprachlicher Hilfe-
systeme für den Einsatz in Fahrzeugen
[Avatar-Based Design of Natural Lan-
guage Help Systems for Use in Vehicles],
Cuvillier, 2009.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

PC-10-03-Hoffman.indd 50 6/24/11 11:04 AM

PURPOSE: The IEEE Computer Society is the world’s largest
association of computing professionals and is the leading
provider of technical information in the field.
MEMBERSHIP: Members receive the monthly magazine
Computer, discounts, and opportunities to serve (all activities
are led by volunteer members). Membership is open to all IEEE
members, affiliate society members, and others interested in the
computer field.
COMPUTER SOCIETY WEBSITE: www.computer.org
OMBUDSMAN: To check membership status or report a change
of address, call the IEEE Member Services toll-free number,
+1 800 678 4333 (US) or +1 732 981 0060 (international). Direct
all other Computer Society-related questions—magazine delivery
or unresolved complaints—to help@computer.org.
CHAPTERS: Regular and student chapters worldwide provide the
opportunity to interact with colleagues, hear technical experts,
and serve the local professional community.
AVAILABLE INFORMATION: To obtain more information on any
of the following, contact Customer Service at +1 714 821 8380 or
+1 800 272 6657:

•	 Membership applications
•	 Publications catalog
•	 Draft standards and order forms
•	 Technical committee list
•	 Technical committee application
•	 Chapter start-up procedures
•	 Student scholarship information
•	 Volunteer leaders/staff directory
•	 IEEE senior member grade application (requires 10 years
•	 practice and significant performance in five of those 10)

PUBLICATIONS AND ACTIVITIES
Computer: The flagship publication of the IEEE Computer Society,
Computer, publishes peer-reviewed technical content that
covers all aspects of computer science, computer engineering,
technology, and applications.
Periodicals: The society publishes 13 magazines, 18 transactions,
and one letters. Refer to membership application or request
information as noted above.
Conference Proceedings & Books: Conference Publishing
Services publishes more than 175 titles every year. CS Press
publishes books in partnership with John Wiley & Sons.
Standards Working Groups: More than 150 groups produce
IEEE standards used throughout the world.
Technical Committees: TCs provide professional interaction in
more than 45 technical areas and directly influence computer
engineering conferences and publications.
Conferences/Education: The society holds about 200
conferences each year and sponsors many educational activities,
including computing science accreditation.
Certifications: The society offers two software developer
credentials. For more information, visit www.computer.org/
certification.

NExT BOARD MEETING
23–27 May 2011, Albuquerque, NM, USA

ExECUTIVE COMMITTEE
President: Sorel Reisman*
President-Elect: John W. Walz*
Past President: James D. Isaak*
VP, Standards Activities: Roger U. Fujii†

Secretary: Jon Rokne (2nd VP)*
VP, Educational Activities: Elizabeth L. Burd*
VP, Member & Geographic Activities: Rangachar Kasturi†

VP, Publications: David Alan Grier (1st VP)*
VP, Professional Activities: Paul K. Joannou*
VP, Technical & Conference Activities: Paul R. Croll†

Treasurer: James W. Moore, CSDP*
2011–2012 IEEE Division VIII Director: Susan K. (Kathy) Land, CSDP†

2010–2011 IEEE Division V Director: Michael R. Williams†

2011 IEEE Division Director V Director-Elect: James W. Moore, CSDP*
*voting member of the Board of Governors †nonvoting member of the Board of Governors

BOARD OF GOVERNORS
Term Expiring 2011: Elisa Bertino, Jose Castillo-Velázquez, George V.
Cybenko, Ann DeMarle, David S. Ebert, Hironori Kasahara, Steven L.
Tanimoto
Term Expiring 2012: Elizabeth L. Burd, Thomas M. Conte, Frank E.
Ferrante, Jean-Luc Gaudiot, Paul K. Joannou, Luis Kun, James W. Moore
Term Expiring 2013: Pierre Bourque, Dennis J. Frailey, Atsuhiro Goto,
André Ivanov, Dejan S. Milojicic, Jane Chu Prey, Charlene (Chuck) Walrad

ExECUTIVE STAFF
Executive Director: Angela R. Burgess
Associate Executive Director; Director, Governance: Anne Marie Kelly
Director, Finance & Accounting: John Miller
Director, Information Technology & Services: Ray Kahn
Director, Membership Development: Violet S. Doan
Director, Products & Services: Evan Butterfield
Director, Sales & Marketing: Dick Price

COMPUTER SOCIETY OFFICES
Washington, D.C.: 2001 L St., Ste. 700, Washington, D.C. 20036-4928
Phone:	+1	202	371	0101	•	Fax: +1 202 728 9614
Email: hq.ofc@computer.org
Los Alamitos: 10662 Los Vaqueros Circle, Los Alamitos, CA 90720-1314
Phone: +1 714 821 8380
Email: help@computer.org

MEMBERSHIP & PUBLICATION ORDERS
Phone:	+1	800	272	6657	•	Fax:	+1	714	821	4641	•	Email:	help@computer.org
Asia/Pacific: Watanabe Building, 1-4-2 Minami-Aoyama, Minato-ku,
Tokyo 107-0062, Japan
Phone:	+81	3	3408	3118	•	Fax: +81 3 3408 3553
Email: tokyo.ofc@computer.org

IEEE OFFICERS
President: Moshe Kam
President-Elect: Gordon W. Day
Past President: Pedro A. Ray
Secretary: Roger D. Pollard
Treasurer: Harold L. Flescher
President, Standards Association Board of Governors: Steven M. Mills
VP, Educational Activities: Tariq S. Durrani
VP, Membership & Geographic Activities: Howard E. Michel
VP, Publication Services & Products: David A. Hodges
VP, Technical Activities: Donna L. Hudson
IEEE Division V Director: Michael R. Williams
IEEE Division VIII Director: Susan K. (Kathy) Land, CSDP
President, IEEE-USA: Ronald G. Jensen

revised 5 May 2011

PC-10-03-Hoffman.indd 51 6/24/11 11:04 AM

	Please quote as 241
	JML_241.pdf

