
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Please quote as: Mauro, C.; Sunyaev, A.; Leimeister, J. M. & Krcmar, H. (2010): 

Standardized device services - A design pattern for service oriented integration of 

medical devices. In: Hawaii International Conference on System Sciences (HICSS) 

2010, Kauai, USA. 



Standardized Device Services – A Design Pattern for Service Oriented 

Integration of Medical Devices 
 

Christian Mauro1 Ali Sunyaev1 Jan Marco Leimeister2 Helmut Krcmar1 
1Technische Universitaet Muenchen  

Information Systems 

Boltzmannstrasse 3  

85748 Garching, Germany  

{mauro, sunyaev, krcmar}@in.tum.de 

2Universitaet Kassel 

Information Systems 

Nora-Platiel-Strasse 4 

34127 Kassel, Germany 

leimeister@uni-kassel.de 

 

 

Abstract 
Service oriented device architecture (SODA) is a 

promising approach for enabling a continuous IT 

support of medical processes in hospitals. However, 

there is a lack of specific design patterns for realizing 

the concept in an effective and efficient way. This 

paper addresses this research gap by introducing the 

Standardized Device Service design pattern, as a first 

fundamental pattern for encapsulating devices as 

services. The pattern is based on both established 

Service Oriented Architecture (SOA) best practices as 

well as latest research in the field of SODA. This paper 

contributes to a) the extension of the IT support of 

medical processes by devices, b) the general concept of 

SODA by addressing the lack of generalized design 

concepts, and c) the existing catalog of SOA design 

patterns by introducing a first pattern for device 

integration. 

 

 

1. Introduction 

 
The standardization of medical treatment is an 

important way of improving quality of care and 

reducing costs in hospitals, e.g., by introducing clinical 

pathways [6]. From an information logistics point of 

view, standardized medical processes define concrete 

information needs of the respective actors along the 

treatment path. This enables the automated provision 

of information according to the principle of 

information logistics, i.e., the right information, at the 

right time, in the right amount, at the right location and 

in the necessary quality [25, 41]. 

In order to realize this vision of seamless healthcare 

with horizontally and vertically integrated healthcare 

processes enabled by seamless IT support, all 

participating IT (Information Technology) systems (i.e. 

software systems and medical devices) have to be 

integrated [41]. Process oriented IT architectures like 

SOA (Service Oriented Architecture) are often 

proposed as a way to support the integration of 

heterogenous software systems and with it the IT 

support of standardized medical processes [3, 32, 33]. 

However, the integration of medical devices is not 

addressed by these works. 

An emerging idea is the application of service 

oriented principles to enable the integration of devices 

[7, 8, 21, 38, 43], which we refer to as Service 

Oriented Device Architecture (SODA) in this paper. 

Devices are encapsulated as services, analogous to 

enterprise services in SOA in order to create 

interoperable virtual devices (device services) [7, 8, 21, 

38, 43], which can be used within IT supported 

processes [5, 15, 21, 22]. As Lesh et al. summarize, 

“Interoperability is an almost non-existent feature of 

medical devices” [27]. Thus, the SODA concept is a 

promising approach to overcome these interoperability 

issues [38, 43]. 

As we showed with a literature review, the research 

field of SODA is mostly unexplored, particularly with 

respect to medical devices [30]. The main subjects of 

the identified works are proof of concepts (e.g., [5, 21]) 

and process orchestration (e.g., [5, 15, 22]) for specific 

use cases. A structured examination of possible 

architectural design concepts based on existing SOA 

design patterns could not be found. In another work 

(currently in submission for publication) we analyzed 

existing SOA design patterns [11, 12] with regard to 

their applicability for SODA. It was shown that 

existing patterns cannot resolve all design problems. 

This paper proposes a first SOA design pattern for 

SODA. As this research is part of a design science 

research project, in accordance with Hevner et al. [18], 

the results are based on existing research knowledge, 

especially on existing (SOA) design patterns. In 

addition, evaluation and improvement of the artifact – 

the new pattern - is part of the research project. 

However, within the scope of this paper, only the 

technical feasibility and a first conceptual evaluation 

mailto:krcmar%7d@in.tum.de


can be demonstrated. The evaluation of different ways 

of implementation, and the overall evaluation of the 

suggested pattern are the objectives of further research. 

This paper contributes to: 

a) the extension of the IT support of medical 

processes by devices by proposing a pattern 

that uncouples the device service consumer 

from the proprietary device interface, 

b) the general concept of SODA by proposing a 

first design pattern that is applicable 

independently of a specific domain or use case, 

c) the existing catalog of SOA design patterns by 

extending it to the integration of devices. 

This paper is structured as follows. First, section 2 

presents the concept of SODA. Then, the most 

important SOA fundamentals are described in section 

3, on which the research is based. Section 4 introduces 

the new Standardized Device Service pattern. In 

section 5, an exemplary scenario, which was 

implemented in our laboratory, demonstrates the 

feasibility of the pattern. A conceptual evaluation of 

the pattern is presented in section 6. Section 7 

summarizes the paper and calls for further research. 

 

2. Service Oriented Device Architecture 

 
2.1. General concept 
 

The basic concept of SODA is the encapsulation of 

devices as services, analogous to enterprise services in 

SOA. An enterprise service is a software component 

that offers a business functionality on a highly 

semantical level by specifying the interface in a 

standardized way [24]. A highly semantical level refers 

to a service that is self-descriptive in a way that it can 

be consumed dynamically and loosely coupled by other 

components with a consistent understanding of shared 

data. In the medical domain, a device service, for 

instance, could offer functionality for measuring the 

current blood pressure of a patient. Based on such 

basic services, more complex services (like a patient 

monitoring system) can be realized. 

The main advantage of the service oriented 

approach is that the manufacturer-specific device 

interface does not have to be known by the service 

consumer and by the programmer, as it is encapsulated 

by a standardized service interface. This enables the 

extension of IT supported medical processes by 

devices. In addition, new functionalities could be 

added to the device service, which are logically related 

to the device but not offered by the device itself (e.g., 

tracking & tracing functionalities); thus, the device 

service can be considered as a virtual device. 

Therefore, software maintenance becomes easier 

because the service interface remains unchanged in 

case of a device exchange or device interface changes. 

 

2.2. State of the art 
 

In previous work a literature review was performed 

to examine the state of the art concerning SODA, 

especially in the health care domain [30]. By using a 

keyword search in the most important journals and 

conferences in the field of information systems, 

computer science, economic science, medical 

informatics and medical science, 26 relevant articles 

were identified, predominantly in a technical format. 

The feasibility and usefulness of the general concept 

was shown in all examined sources, and fundamental 

results shown by the various authors. 

However, much room for further research was 

identified, with the primary research gaps categorized 

into three layers [30]: 

 Requirements Layer: Analyses of requirements 

could not be found, taking the specifics of device 

services into consideration. 

 Technical Layer: Architectures, used in existing 

works for instantiating the SODA concept, were 

built from scratch (e.g., [43]). Although 

implementation details (like selected 

technologies) were part of the studies (e.g., [21]), 

general design concepts were not included. The 

use of existing SOA design patterns was not 

documented (or not considered), and the 

development of new patterns with respect to 

device integration was not addressed. 

 Methodology Layer: No analyses were found that 

indicated whether existing SOA methodologies 

(like methods for service identification) were 

transferable to device services. 

Concerning the requirements layer, analyses of the 

specifics of device services are part of another work 

that is currently in submission for publication. The 

results are summarized in the next section. 

This paper focuses on the technical layer, and more 

specifically, on the general design concepts for SODA. 

However, technologies themselves are not examined. 

The research is built upon the findings of the identified 

existing works. Thus, further results of the state of the 

art analysis are presented at the respective sections. 

 

2.3. Specific requirements for device services 
 

Contrary to software services, device services are 

based on physical devices. Thus, the following 

characteristics of devices influence the specific 

requirements of device services: 

Mobility: Several devices are designed to be 

moveable; thus, the device (and with it the service) 



might temporally not be available (e.g., portable 

ultrasound devices [29]). 

Locality: The locality of devices might be 

important in several cases, e.g., in hospitals the 

mapping of a device to a patient could be based on the 

locality of the device. In addition, the quick 

localization of a device can be important, e.g., 

respirators [26]. The locality, naturally, correlates with 

the mobility. 

Manual influences: Devices can be directly 

influenced by human beings. Settings can be changed 

and, most importantly, devices can be switched on or 

off at any time [28]. 

Replacement: Devices might be replaced by others 

(other manufacturer, model or version) in case of 

failure or for reasons of maintenance [31]. 

Devices as resource: Devices are physical 

resources. Therefore, they can be reserved or they 

might be designed for exclusive access only [17]. 

Hardware interfaces: When integrating legacy 

software systems, proprietary interfaces are a 

significant challenge. When integrating devices, apart 

from software interfaces, hardware interfaces also have 

to be taken into consideration [39]. 

Software changeability: The internal software of 

devices often cannot be changed or is not allowed to be 

changed. For instance, medical devices are certified. 

Any changes, not permitted by the manufacturer, 

would result in a loss of certification [14]. 

From these characteristics of devices, the following 

specific requirements for device services can be 

deduced, that is, device services must be able to: 

 dynamically handle different kinds of device 

interfaces, which usually cannot be influenced, 

 manage the fact that devices can suddenly be not 

accessible at any time and 

 provide functionality for handling devices as 

physical resource (e.g., exclusive access and 

locality) if required. 

When developing design patterns for device 

services, these requirements have to be taken into 

consideration. In addition, they should coincide with 

existing SOA best practices, which are presented in the 

next section. 

 

3. SOA best practices 

 
3.1. SOA design principles 
 

Our approach is based on following SOA design 

principles, which can be found in different works [2, 9, 

36, 42]: 

Standardized Service Contract. Service contracts 

define the capabilities of services. They should be 

defined in a standardized way, preferring the contract-

first approach (i.e., defining the contract before 

implementing the service). This principle ensures 

consistent and partly reusable service contracts. 

Service Loose Coupling. This principle asks to 

avoid negative types of coupling as Contract-to-

Functional Coupling, Contract-to-Implementation 

Coupling, Contract-to-Logic Coupling and Contract-to-

Technology Coupling (for further information about 

these types of coupling, see [9]). 

Service Abstraction. The application of this 

principle turns services into a black box. The use of 

volatile information (which can possibly change in 

future, e.g., when a service is composed of other 

services) by the service consumer is avoided by this 

principle. 

Service Reusability. This principle focuses on 

ensuring robust and generic services, which can be 

reused on different positions within the IT 

infrastructure. 

Service Autonomy. This principle advocates a 

maximum of control of a service over its underlying 

runtime execution environment. For example, this 

means that two services should not have direct access 

to the same data object on a database. 

Service Statelessness. The management of state 

information consumes system resources and should 

therefore be avoided as far as possible. 

Service Discoverability. This principle advises that 

services contain communicative meta data that enable 

discovery and interpretation. 

Service Composability. Services should be designed 

in a way that enables them to be effective participants 

in service compositions. 

In general, it is not possible to fulfill all SOA 

design principles. For instance, task services contain 

specific process logic, and are therefore not reusable in 

most cases [9, 24]. However, for maximizing the 

benefits of SOA, the solution design for device 

integration should, as much as possible, be in accord 

with the principles.  

 

3.2. SOA patterns 

 
In this paper, we present a first SOA design pattern 

for SODA. The idea of patterns can be traced back to 

Alexander [1] in the field of architecture and Gamma 

[13] in the area of software engineering. Basically, a 

pattern consists of the following elements [4, 40]: the 

context of a given problem and its circumstances, the 

description of the problem itself (also called forces), 

the proposed solution for the problem and references to 

related patterns. 

Erl [12] extends this meta-definition of a pattern by 

using: 



 a Pattern Profile (consisting of a requirement 

definition, an icon, a summary table, a problem 

definition, a solution, an application description, 

impacts, relationships and a case study example) 

and 

 a Pattern Notation (including specific symbols to 

represent different kinds of patterns, as well as 

different types of pattern figures to emphasize 

specific aspects of the pattern). 

Due to space restrictions, the complete definition of 

the pattern profile of the Standardized Device Service 

pattern is not included in this paper. Instead, the pattern 

is introduced in the next section in a more consolidated 

and understandable way. Patterns contain generalized 

concepts for a specific problem. Thus, the Standardized 

Device Service pattern can be used as a guideline to 

design and implement device services, based on SOA 

best practices. 

 

4. Standardized Device Service pattern 

 
This section introduces the new Standardized 

Device Service pattern. It is a compound pattern, i.e., it 

is comprised of combinations of design patterns [12]. 

The name of the pattern is due to the fact, that realizes 

device services with standardized service contracts (cf. 

3.1 and 4.2) The following patterns are included: 

 Service Encapsulation 

 Legacy Wrapper 

 Dynamical Adapter 

 Auto-Publishing 

The former two patterns are established SOA 

design patterns; the latter two patterns could not be 

found by the authors in the examined pattern literature. 

These two patterns, as well as the compound pattern, 

are suggested by the authors as new SOA design 

patterns. All patterns are described within the next 

sections. 

4.1. Service Encapsulation pattern 
 

The Service Encapsulation pattern is the basis of 

any SOA and therefore the basis of SODA as well. It 

addresses the problem of how to make solution logic 

available as a resource of the enterprise when the 

associated application was originally not designed to 

be interoperable [12]. 

The solution, offered by this pattern, is to 

encapsulate the solution logic by a service. Applied to 

devices, the concept of SODA arises. 

In order to realize the service encapsulation of 

devices, three different implementation concepts can 

be identified in the literature: 

 Direct Integration: The device service is offered 

by the device itself (e.g., by using the Devices 

Profile for Web Services, as in [21]). 

 Adapter Integration: The device is connected to 

an adapter that offers the device service (e.g., by 

using a XPORT-Adapter, as in [15]) 

 Server Integration: The device is connected 

(maybe by using an adapter) to a server that 

offers the device service (e.g., by installing device 

drivers and a web application server, as in [43]). 

 

4.2. Legacy Wrapper pattern 

 
Legacy applications are often automatically 

wrapped as services when integrating them into a SOA. 

As a result, functions of the application are directly 

exposed as capability of the service, using the 

proprietary data model of the legacy application. 

The Legacy Wrapper pattern addresses the problem 

of negative type of coupling caused by wrapper 

services. It advocates the establishment of a 

standardized service contract when wrapping legacy 

systems as a service (Figure 1) [12]. Thus, the coupling 

of service logic to the legacy application programming 

interface (API) is high, but the coupling of service 

Figure 1: Legacy Wrapper pattern (according to [12]) 



consumers to the implementation is loose. In this way, 

changes of the legacy API or the replacement of the 

legacy application affect the service implementation 

but not the service contract. Ideally, service consumers 

do not even notice changes behind the service contract. 

Medical devices can be perceived as legacy 

applications. When encapsulating devices by services, 

the service contract may often be non-standardized, 

especially if the wrapper service is delivered by the 

device manufacturer. The application of the Legacy 

Wrapper pattern results in a standardized device 

service contract, which can be used for any device of a 

specific class (e.g., infusion pumps). This enables a 

loose coupling of consumers to devices. Irrespective of 

the physical device (its manufacturer, its model and its 

interface version) service consumers are faced with the 

same standardized service contract. If devices are 

updated or replaced, service consumers do not need to 

adapt their implementations. 

 

4.3. Dynamic Adapter pattern 
 

Wrapper services are usually responsible for 

encapsulating a specific legacy application in a specific 

version. Updates of the API or the whole replacement 

of the legacy application occur rarely and these tasks 

would be performed in an accurately planned way. 

In the context of devices (especially medical 

devices in hospitals), the replacement or update of 

devices occurs much more spontaneously, dependent 

on the current needs (cf. 2.3). If, for instance, a medical 

device breaks down, the health personnel immediately 

replaces the device by another one of the same type, 

but not necessarily of the same manufacturer, the same 

model or same version. Existing works about SODA 

only support a static handling of adapters (e.g., in 

[15]). 

The Dynamic Adapter pattern addresses this 

problem by inserting adapter logic into the device 

service (cf. 4.5). The adapter logic is responsible for 

recognizing the model and version of the device and 

for dynamically selecting an appropriate adapter that  

is able to communicate with the given device. 

Another responsibility of the adapter logic is hiding 

proprietary device interfaces from the service logic. As 

a consequence, the addition of a new device adapter 

can be executed at runtime. The adapter logic only 

needs to know where the new adapter can be found and 

which device(s) it is compatible with. 

 

4.4. Auto-Publishing pattern 

 
Software services are usually manually registered 

in the service registry once. Afterwards, the entry in 

the service registry does not need to be updated until 

the service contract is modified or the service is 

completely shut down. In addition, the unscheduled 

shutdown of a service is a serious incident and can 

affect the operability of other services. If, for instance, 

a customer service were to shut down, all dependent 

services that need to create, update or find customers 

would not work properly any more. 

Device services behave differently. The shutdown 

of a device service is a normal task and can happen 

almost anytime, e.g., when a device is replaced or 

getting switched off (cf. 2.3). Thus, the operability of a 

device service directly depends on the operability of 

the associated device. This aspect can also be found in 

existing research about SODA (e.g., [22]). 

This problem is addressed by the Auto-Publishing 

pattern which extends the service logic by a 

mechanism that enables services to automatically 

publish their service contracts to the service registry. In 

addition, services automatically unregister themselves, 

when the device is no longer accessible. 

 

4.5. Architecture 
 

Figure 2 depicts the architecture of standardized 

device services. They consist of a standardized service 

contract, service logic and adapter logic. 

The standardized service contract is the (for the 

Figure 2: Standardized Device Service pattern 



service consumer) visible part of the device service. It 

is independent of proprietary device APIs, and is 

constructed on the basis of functionalities and data that 

a device of the specific class offers. 

The service logic is the implementation of the 

service and therefore realizes the service contract. 

Thus, there is a tight coupling of the service logic to 

the service contract, which is the only type of positive 

coupling [9]. In addition, the service logic is 

responsible for automatically publishing or 

unpublishing the service to the service registry, 

depending on the status of the associated device. 

The adapter logic is responsible for selecting an 

appropriate adapter to communicate with the device. In 

addition, it monitors the status of the device. If the 

device status changes (plugged on/off, switched on/off, 

etc.), the adapter logic informs the service logic about 

the new status for the purpose of auto-

publishing/unpublishing. Because the adapter logic is 

faced with the proprietary device API, there is a tight 

coupling of the adapter logic to the device. 

The most important aspect is the coupling of 

service consumers to devices. Service consumers are at 

all times faced with the same standardized service 

contract, independent of the actual physical device. 

Thus, service consumers are completely decoupled 

from the devices. 

 

4.6. Standardized by whom? 
 

When using the term “Standardized”, the question 

arises, by whom the standardization is performed. In 

the context of SOA, the standardization of services, 

service contracts or data models is related to the 

enterprise or at least subdomains (an overall 

standardization is not realizable in most cases) [9]. 

In the healthcare domain, several standards exist, 

like DICOM (Digital Imaging and Communications in 

Medicine), HL7 (Health Level 7) or ISO/IEEE 11073 

[16]. They should be taken into consideration when 

designing service contracts for device services. This 

ensures stable and consistent device service contracts. 

Within hospitals, different departments have 

different information needs and the use of specific 

medical devices depends on the specialization of the 

department. Thus, a single service inventory for the 

whole hospital might not be reasonable. Instead, the 

Domain Inventory pattern should be adopted. It groups 

services “into manageable, domain-specific service 

inventories, each of which can be independently 

standardized, governed and owned.” [12]. 

 

5. Exemplary scenario 

 
The application of the Standardized Device Service 

pattern is demonstrated by an exemplary scenario. This 

scenario was successfully prototypically implemented 

in our laboratory. 

 

5.1. PCA infusion pumps 
 

In the anesthesia and intensive care unit, infusion 

pumps are used to “deliver fluid and drugs to the 

patient in a controlled and easily manageable way” 

[19]. With PCA (Patient-Controlled Analgesia) 

infusion pumps, drugs can be delivered in a continuous 

fluid or in PCA mode. In this mode, the patient can 

demand a certain amount of drugs, e.g., by pressing a 

button. For safety reasons, this amount is limited by 

health personnel. The aim of PCA is “to reduce the 

dose of analgesic drug to the lowest value acceptable 

by the patient” [19]. 

For the purpose of medical documentation, the 

most interesting data are the medication process and 

(in PCA mode) especially the PCA behavior of the 

patient. For this reason, infusion pumps are usually 

provided with an interface for communication with 

other systems, e.g., Patient Data Management Systems 

(PDMS [34]). Normally, these interfaces are 

proprietary and therefore not standardized. 

For the following scenario, B. Braun Perfusor® 

Space infusion pumps are used in conjunction with a 

B. Braun SpaceStation and SpaceCom. The 

SpaceStation acts as a container for several infusion 

pumps. The SpaceCom component is the 

communication center of the SpaceStation. Infusion 

pumps within a SpaceStation can only be accessed 

over the SpaceCom component by using a proprietary 

ASCII (American Standard Code for Information 

Interchange) protocol (BCC Protocol Version V.3.26). 

 

5.2. Scenario 
 

The following scenario is kept simple to 

demonstrate the concept of standardized device 

services. Thus, the complexity of intensive care units 

with lots of devices and monitors is reduced to infusion 

pumps. In addition, the service contract is limited to 

manually controlled PCA infusion pumps only. So-

called closed-loop control of pumps (i.e., pumps that 

are controlled by computer applications) are not within 

the scope of the service contract. This classification is 

reasonable; due to legal issues (cf. [14]), many infusion 

pumps are not intended to be controlled over their IT 

interfaces. 

In the scenario, a B. Braun SpaceStation with four 

infusion pumps is used in conjunction with the B. 

Braun SpaceCom (Figure 3). Two pumps are actually 

in use, and the other two pumps are switched off. The 

device service has automatically published two 



services (one for each pump) to the service registry. 

Service customers can find such device services by 

sending a search request to the service registry. 

Afterwards, the service consumer receives all 

necessary information to use the service. 

 

 

Figure 3: Medical scenario 
 

5.3. Activity 1: on/off-switching of pumps 
 

In addition to the two operating pumps, a third 

pump is switched on by the health personnel. The 

adapter logic recognizes the new pump and informs the 

service logic, which publishes a new service to the 

service registry. The new device service can now be 

found and used by service consumers. 

After a while, the third pump gets switched off. 

Again, the adapter logic recognizes the change and 

informs the service logic, which unpublishes the 

service. Now, the device service can no longer be 

found or used by service consumers. 

Remark: In fact, the direct communication of e.g., a 

PDMS to the infusion pump device services is not 

reasonable. The PDMS would have to take care of new 

device services for the considered patient and for 

device services that are no longer available. In this 

situation, the creation of another service is suggested: 

one that collects the medication data of all infusion 

pumps, and one to which specific patients are assigned. 

For this purpose, we developed a pattern called Device 

Concentrator, which monitors a specific set of device 

services (e.g., all infusion pumps associated with 

patient X). The Device Concentrator pattern is out of 

the scope of this paper and is therefore not included in 

the scenario. 

 

5.4. Activity 2: device replacing 
 

The SpaceCom with protocol version v3.26 shall be 

replaced by a SpaceCom with the protocol v4.00 

(remark: fictive protocol version), which is not 

compatible with the old version. For this purpose, the 

old SpaceCom is completely switched off. The adapter 

logic recognizes the changes and informs the service 

logic which unregisters all affected services. 

The adapter logic recognizes the new SpaceCom 

and selects the appropriate adapter (note: at first time, 

the associated adapter must be made available to the 

device service. This should be done by the IT 

department in advance, including functional tests). 

Subsequently, the service logic publishes services for 

all operating infusion pumps. 

The service consumer does not notice any changes. 

He is faced with the same standardized service contract 

as before and does not need to adapt his 

implementation. 

 

5.5. Service contract 
 

The service contract for the infusion pumps, used in 

the presented scenario, was defined by using the Web 

Services Description Language (WSDL). The data 

model was based on the ISO/IEEE 11073 standard [19] 

and defined using XML Schema [44]. Details of the 

contract are out of the scope of this paper. Thus, only 

the simplified service interface is depicted in Figure 4, 

using the SOA Modelling Language (SoaML) [35], 

which is based on UML 2.0 (Unified Modeling 

Language). This service interface is part of the 

standardized service contract. Thus, independent of the 

specific infusion pump (manufacturer, model, version) 

actually in use, the service interface remains 

unchanged. 

 

 

Figure 4: Device service interface 
 

The getGeneralDeviceData functionality delivers 

general information about the device, such as the 

manufacturer, model version and serial number. 

Information, which is specific to infusion pumps, can 

be obtained by getPumpStatus, e.g., battery status, 

readiness for infusion, current power supply, active 

pumping, etc. Information about the medication, 

currently infused into the patient, can be gathered with 

getMedicationData. The getAlarms functionality 

delivers all current alarms, such as the battery empty 

alarm, pressure alarm, end of volume alarm, etc. 

Changed information can also be obtained by using 

the Observer pattern [13], also called Event-Driven 

Messaging pattern in the context of SOA [12]. Thus, 



the service consumer subscribes to a specific event, 

e.g., a specific alarm, pump status changes or current 

medication data every five seconds. If the specific 

event occurs, corresponding information is sent to the 

service consumer by the device service. 

 

6. Conceptual evaluation 
 

The Standardized Device Service pattern is based 

on best practice SOA as well as on existing works in 

the field of SODA. In addition, the specific 

requirements of device services were taken into 

account. Furthermore, the technical feasibility could be 

proved by a prototypical implementation. However, a 

pattern “provides a proven solution to a common 

problem” [12]. Thus, the overall evaluation of the 

pattern needs further research, especially practical 

experiences.  

As a first quality criterion, in the following, we 

present a reflection of the eight SOA design principles, 

presented in section 3.1. 

Standardized Service Contract. The concept 

realizes standardized service contracts per definition by 

applying the Legacy Wrapper pattern (cf. 4.2). 

Standardization is additional supported by the 

recommendation of considering existing standards 

when designing the service contract (cf. 4.6). Thus, 

services contracts are standardized in any case. 

Service Loose Coupling. The concept follows the 

contract-first approach. Negative types of coupling are 

avoided by using the Legacy Wrapper pattern (cf 4.5). 

Thus, there can’t be a tight coupling between service 

consumers and device services. 

Service Abstraction. Device services are designed 

as a black box. Service consumers are not faced with 

interfaces of physical devices, nor are service 

consumers aware of implementation details, such as 

device identification or adapter selection. Thus, the 

service abstraction is very high. 

Service Reusability. Device services are not 

restricted to specific devices, but are valid for all 

devices of a specific class. As an example, a device 

service for infusion pumps can be used for any infusion 

pump in a hospital, independent of manufacturer, 

model or version. Thus, the reusability potential is very 

high. 

Service Autonomy. The autonomy of device 

services depends on the way of implementing the 

service. If device identification and adapter selection is 

encapsulated to other services, the autonomy is 

moderate. If these mechanisms are realized within the 

service itself, the autonomy is high if no other 

components can access the stored data. 

Service Statelessness. Depending on the device 

class, scenarios are possible where state information 

has to be managed by the device service. One possible 

scenario is the exclusive use of a physical device by a 

service consumer. In this case, the device service has to 

store information about the consumer and the usage 

time / timeout limits. Another example is event 

managing. If service consumers are enabled to 

subscribe to specific events, the device has to manage 

subscriber information. 

Service Discoverability. This depends on the 

technology. If web service technologies are used to 

realize device services, service discoverability is given 

by default [10]. 

Service Composability. Being classified as utility 

service (cf. 4.7), device services are highly composable 

if the service contract is designed well. 

The results of the reflection are summarized in 

Table 1. Completely/Predominantly fulfilled means 

that the application of the pattern enables, e.g., a very 

high/high degree of service reusability. 

 

Table 1: Standardized Device Service pattern: 
reflection of SOA design principles 

SOA Design Principle Fulfillment 

Standardized Service Contract  
Service Loose Coupling  
Service Abstraction  
Service Reusability  
Service Autonomy   1) 

Service Statelessness   2) 

Service Discoverability   3) 

Service Composability  
1) Depends on implementation, here: adapter logic intern, service 

logic with extern connectivity. 
2) Depends on device/service functionality, here: only subscriber 

states are managed. 
3) Depends on technology, here: web services. 

 = completely fulfilled, = predominantly fulfilled 

 

The table reflects the perception of the authors. The 

definition of objective criteria for each design principle 

is extensive work (cf. [37] for the example of loose 

coupling) for future research and therefore out of scope 

of this paper. As shown, the concept of standardized 

device services has the potential to completely fulfill 

all SOA principles. Depending on the way of 

implementation and depending on the specific device 

service functionality, it might be necessary to make 

concessions to the service autonomy and service 

statelessness principles. 

 

7. Conclusion and future research 

 
As has been shown in several studies (e.g., [15, 20, 

23, 43]), SODA is a promising concept for overcoming 



interoperability issues, especially for extending the IT 

support of processes to devices. In the literature, 

however, general design concepts are missing. This 

paper proposes the Standardized Device Service 

pattern, which is composed of two existing and two 

newly developed patterns. The concept is based on 

SOA best practices, as well as on existing works, with 

respect to the eight SOA principles. By implementing a 

prototype which realizes the new pattern on the 

example of infusion pumps, the technical feasibility of 

the concept is proven. 

As a pattern, the presented concept is flexible and 

reusable (cf. [12]). Thus, it is not limited to specific 

domains, devices or IT architectures. It can be applied 

in situations where devices are integrated into a SOA 

or when devices are encapsulated as services for 

overcoming interoperability issues. In the healthcare 

domain, the Standardized Device Service pattern 

enables the integration of medical devices. Thus, in 

combination with existing SOA design patterns, the 

entire IT support of medical processes can be realized, 

based on SOA best practices. 

As mentioned, further research is required. In a 

next step, several technologies and ways of 

implementation will be analyzed and compared with 

each other. In addition, a more complex scenario will 

be realized to evaluate and improve the concept. If 

reasonable, further patterns will be developed. 

Even if SODA is a promising concept, the 

management of adapters for devices to enable the 

service encapsulation, is still an undesirable task. Thus, 

the efforts of standardization in healthcare should be 

further expanded. If the potentials of the SODA 

concept can be transferred and realized in practice, the 

adoption of an official standard for device services 

(analogous to ISO/IEEE 11073) would be a desirable 

consequence. 

 

8. References  
 

[1] C. Alexander, The timeless way of building. New York: 

Oxford University Press, 1979. 

 

[2] R. Baskerville, M. Cavallari, K. Hjort-Madsen, J. Pries-

Heje, M. Sorrentino, and F. Virili, "Extensible Architectures: 

The Strategic Value of Service Oriented Architecture in 

Banking," in European Conference on Information Systems 

(ECIS) Regensburg, 2005. 

 

[3] M. W. Bridges, "SOA in Healthcare," Health 

Management Technology, vol. 28, pp. 6-10, 2007. 

 

[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, 

and M. Stal, Pattern-Oriented Software Architecture: A 

System of Patterns. West Sussex: Wiley & Sons, 1996. 

 

[5] D. Cachapa, A. Colombo, M. Feike, and A. Bepperling, 

"An approach for integrating real and virtual production 

automation devices applying the service-oriented architecture 

paradigm," Emerging Technologies & Factory Automation, 

2007. ETFA. IEEE Conference on, pp. 309 - 314, 2007. 

 

[6] P. L. Chang, T. M. Wang, S. T. Huang, M. L. Hsieh, K. 

H. Tsui, and R. H. Lai, "Effects of implementation of 18 

clinical pathways on costs and quality of care among patients 

undergoing urological surgery," The Journal of Urology, vol. 

161, pp. 1858-1862, 1999. 

 

[7] S. de Deugd, R. Carroll, K. E. Kelly, B. Millett, and J. 

Ricker, "SODA: Service Oriented Device Architecture," 

Pervasive Computing, IEEE, vol. 5, pp. 94-96, 2006. 

 

[8] L. M. S. de Souza, P. Spiess, D. Guinard, M. Köhler, S. 

Karnouskos, and D. Savio, "SOCRADES: A Web Service 

based Shop Floor Integration Infrastructure," in The Internet 

of Things. First International Conference (IOT 2008), 2008. 

 

[9] T. Erl, SOA Principles of Service Design. Boston: 

Prentice Hall International, 2007. 

 

[10] T. Erl, Web Service Contract Design and Versioning for 

SOA. Boston: Prentice Hall International, 2008. 

 

[11] T. Erl, "SOA Patterns - Candidate Pattern List," 2009. 

 

[12] T. Erl, SOA Design Patterns. Boston: Prentice Hall 

International, 2009. 

 

[13] E. Gamma, Design Patterns: Elements of Reusable 

Object-Oriented Software. Massachusetts: Addison-Wesley 

Publishing Company, 1995. 

 

[14] A. Gärtner, Medizinproduktesicherheit - Band 1: 

Medizinproduktegesetzgebung und Regelwerk. Köln: TÜV 

Media, 2008. 

 

[15] V. Gilart-Iglesias, F. Maciá-Pérez, F. José Mora-

Gimeno, and J. V. Berná-Martínez, "Normalization of 

Industrial Machinery with Embedded Devices and SOA," in 

Conference on Emerging Technologies and Factory 

Automation (ETFA '06), 2006. 

 

[16] P. Haas and C. Johner, Praxishandbuch IT im 

Gesundheitswesen. Erfolgreich einführen, entwickeln, 

anwenden und betreiben München: Carl Hanser Verlag, 

2009. 

 

[17] R. Haux, A. Winter, E. Ammenwerth, and B. Brigl, 

Strategic Information Management in Hospitals. New York: 

Springer-Verlag, 2004. 

 

[18] A. R. Hevner, S. T. March, J. Park, and S. Ram, "Design 

Science in Information Systems Research," MIS Quarterly, 

vol. 28, pp. 75-105, 2004. 

 

[19] ISO/IEEE, ISO/IEEE 11073-10101:2004: Health 

informatics - Point-of-care medical device communication - 

Part 10101: Nomenclature, 2004. 



[20] F. Jammes, H. Smit, C. Arandyelovitch, and F. 

Depeisses, "Intelligent device networking in industrial 

automation," in 2nd IEEE International Conference on 

Industrial Informatics (INDIN '04), Berlin, 2004, pp. 449-

456. 

 

[21] F. Jammes and H. Smit, "Service-Oriented Paradigms in 

Industrial Automation," IEEE TRANSACTIONS ON 

INDUSTRIAL INFORMATICS, vol. 1, pp. 62-70, 2005. 

 

[22] F. Jammes, H. Smit, J. L. M. Lastra, and I. M. Delamer, 

"Orchestration of service-oriented manufacturing processes," 

in 10th IEEE Conference on Emerging Technologies and 

Factory Automation (ETFA 2005), 2005, pp. 617-624. 

 

[23] S. Karnouskos, O. Baecker, L. M. S. de Souza, and P. 

Spiess, "Integration of SOA-ready Networked Embedded 

Devices in Enterprise Systems via a Cross-Layered Web 

Service Infrastructure," in 12th IEEE Conference on 

Emerging Technologies and Factory Automation (ETFA 

2007), Patra, Greece, 2007. 

 

[24] D. Krafzik, K. Banke, and D. Slama, Enterprise SOA - 

Service-Oriented Architecture Best Practices. Indiana, USA: 

Pearson Education, 2006. 

 

[25] H. Krcmar, Informationsmanagement: Springer Berlin 

Heidelberg New York, 2005. 

 

[26] J. M. Leimeister, A. Schweiger, and H. Krcmar, 

"Ortsunabhängiges Management von hochpreisigen mobilen 

medizinischen Geräten im Krankenhaus auf WLAN-Basis," 

in Proceedings of Informatik 2006, GI - Gesellschaft für 

Informatik, Ed. Dresden, 2006, pp. 220-226. 

 

[27] K. Lesh, S. Weininger, J. M. Goldman, B. Wilson, and 

G. Himes, "Medical Device Interoperability – Assessing the 

Environment," in Joint Workshop on High Confidence 

Medical Devices, Software, and Systems and Medical Device 

Plug-and-Play Interoperability, 2007. 

 

[28] E. Liljegren, "Usability in a medical technology context 

assessment of methods for usability evaluation of medical 

equipment," International Journal of Industrial Ergonomics, 

vol. 36, pp. 345-352, 2006. 

 

[29] S.-C. Liu, W.-T. Chang, C.-H. Huang, T.-I. Weng, H.-

M. Ma Matthew, and W.-J. Chen, "The value of portable 

ultrasound for evaluation of cardiomegaly patients presenting 

at the emergency department," Resuscitation, vol. 64, pp. 

327-331, 2005. 

 

[30] C. Mauro, A. Sunyaev, J. M. Leimeister, and H. Krcmar, 

"Service-orientierte Integration medizinischer Geräte - eine 

State of the Art Analyse," in Wirtschaftsinformatik 2009 - 

Business Services: Konzepte, Technologien und 

Anwendungen Wien, 2009, pp. 119-128. 

 

[31] J. McCauley and F. D. Joseph, "Maintenance and Repair 

of Medical Devices," in Clinical Engineering Handbook 

Burlington: Academic Press, 2004, pp. 130-132. 

[32] J. P. Melrose, "e-health is the way via SOA," Healthcare 

Financial Management, vol. 61, pp. 120-122, 2007. 

 

[33] J. C. Naranjo, C. Fernandez, S. Pomes, and B. 

Valdivieso, " Care-Paths: Searching the way to implement 

pathways," in Computers in Cardiology Valencia, 2006, pp. 

285-288. 

 

[34] S. P. Nelwan, T. B. van Dam, S. H. Meij, and N. H. J. 

van der Putten, "Implementation and use of a patient data 

management system in the intensive care unit: A two-year 

experience," in Computers in Cardiology, 2007, 2007, pp. 

221-224. 

 

[35] OMG, "Service oriented architecture Modeling 

Language (SoaML) - Specification for the UML Profile and 

Metamodel for Services (UPMS)," 2008. 

 

[36] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. 

Leymann, "Service-Oriented Computing: State of the Art and 

Research Challenges," Computer, vol. 40, pp. 38-45, 2007. 

 

[37] C. Pautasso and E. Wilde, "Why is the web loosely 

coupled?: a multi-faceted metric for service design," in 

Proceedings of the 18th international conference on World 

wide web Madrid, Spain: ACM, 2009. 

 

[38] S. Pöhlsen, S. Schlichting, M. Strähle, F. Franz, and C. 

Werner, "A Concept for a Medical Device Plug-and-Play 

Architecture based on Web Services," in 2nd Joint Workshop 

on High-Confidence Medical Devices, Software and Systems 

(HCMDSS) and Medical Device Plug-and-Play 

Interoperability (MD PnP) San Francisco, 2009, pp. 52-65. 

 

[39] M. I. Reynolds, "Device Interfaces," in Anesthesia 

Informatics, J. Stonemetz and K. Ruskin, Eds. Berlin: 

Springer Verlag, 2008, pp. 109-146. 

 

[40] M. Schumacher, Security engineering with patterns: 

origins, theoretical models, and new applications. Berlin: 

Springer, 2003. 

 

[41] A. Schweiger, A. Sunyaev, J. M. Leimeister, and H. 

Krcmar, "Toward Seamless Healthcare with Software 

Agents," Communications of the Association for Information 

Systems (CAIS), vol. 19, pp. 692-709, 2007. 

 

[42] M. Stal, "Using architectural patterns and blueprints for 

service-oriented architecture," Software, IEEE, vol. 23, pp. 

54-61, 2006. 

 

[43] M. Strähle, M. Ehlbeck, V. Prapavat, K. Kück, F. Franz, 

and J.-U. Meyer, "Towards a Service-Oriented Architecture 

for Interconnecting Medical Devices and Applications," in 

Joint Workshop on High Confidence Medical Devices, 

Software, and Systems and Medical Device Plug-and-Play 

Interoperability, 2007. 

 

[44] W3C, "XML Schema Part 0: Primer Second Edition - 

W3C Recommendation," 2004. 

 
 


